This repository has been archived on 2025-03-20. You can view files and clone it, but cannot push or open issues or pull requests.
The-Powder-Toy/src/client/GameSave.cpp
2021-02-15 21:24:44 +01:00

2873 lines
87 KiB
C++

#include "GameSave.h"
#include <iostream>
#include <cmath>
#include <climits>
#include <memory>
#include <set>
#include <cmath>
#include "bzip2/bzlib.h"
#include "Config.h"
#include "Format.h"
#include "hmap.h"
#include "simulation/Simulation.h"
#include "simulation/ElementClasses.h"
#include "common/tpt-minmax.h"
GameSave::GameSave(GameSave & save):
majorVersion(save.majorVersion),
waterEEnabled(save.waterEEnabled),
legacyEnable(save.legacyEnable),
gravityEnable(save.gravityEnable),
aheatEnable(save.aheatEnable),
paused(save.paused),
gravityMode(save.gravityMode),
airMode(save.airMode),
edgeMode(save.edgeMode),
signs(save.signs),
stkm(save.stkm),
palette(save.palette),
pmapbits(save.pmapbits),
expanded(save.expanded),
hasOriginalData(save.hasOriginalData),
originalData(save.originalData)
{
InitData();
hasPressure = save.hasPressure;
hasAmbientHeat = save.hasAmbientHeat;
if (save.expanded)
{
setSize(save.blockWidth, save.blockHeight);
std::copy(save.particles, save.particles+NPART, particles);
for (int j = 0; j < blockHeight; j++)
{
std::copy(save.blockMap[j], save.blockMap[j]+blockWidth, blockMap[j]);
std::copy(save.fanVelX[j], save.fanVelX[j]+blockWidth, fanVelX[j]);
std::copy(save.fanVelY[j], save.fanVelY[j]+blockWidth, fanVelY[j]);
std::copy(save.pressure[j], save.pressure[j]+blockWidth, pressure[j]);
std::copy(save.velocityX[j], save.velocityX[j]+blockWidth, velocityX[j]);
std::copy(save.velocityY[j], save.velocityY[j]+blockWidth, velocityY[j]);
std::copy(save.ambientHeat[j], save.ambientHeat[j]+blockWidth, ambientHeat[j]);
}
}
else
{
blockWidth = save.blockWidth;
blockHeight = save.blockHeight;
}
particlesCount = save.particlesCount;
authors = save.authors;
}
GameSave::GameSave(int width, int height)
{
InitData();
InitVars();
hasOriginalData = false;
expanded = true;
setSize(width, height);
}
GameSave::GameSave(std::vector<char> data)
{
blockWidth = 0;
blockHeight = 0;
InitData();
InitVars();
expanded = false;
hasOriginalData = true;
originalData = data;
try
{
Expand();
}
catch(ParseException & e)
{
std::cout << e.what() << std::endl;
dealloc(); //Free any allocated memory
throw;
}
Collapse();
}
GameSave::GameSave(std::vector<unsigned char> data)
{
blockWidth = 0;
blockHeight = 0;
InitData();
InitVars();
expanded = false;
hasOriginalData = true;
originalData = std::vector<char>(data.begin(), data.end());
try
{
Expand();
}
catch(ParseException & e)
{
std::cout << e.what() << std::endl;
dealloc(); //Free any allocated memory
throw;
}
Collapse();
}
GameSave::GameSave(char * data, int dataSize)
{
blockWidth = 0;
blockHeight = 0;
InitData();
InitVars();
expanded = false;
hasOriginalData = true;
originalData = std::vector<char>(data, data+dataSize);
#ifdef DEBUG
std::cout << "Creating Expanded save from data" << std::endl;
#endif
try
{
Expand();
}
catch(ParseException & e)
{
std::cout << e.what() << std::endl;
dealloc(); //Free any allocated memory
throw;
}
//Collapse();
}
// Called on every new GameSave, including the copy constructor
void GameSave::InitData()
{
blockMap = NULL;
fanVelX = NULL;
fanVelY = NULL;
particles = NULL;
pressure = NULL;
velocityX = NULL;
velocityY = NULL;
ambientHeat = NULL;
fromNewerVersion = false;
hasPressure = false;
hasAmbientHeat = false;
authors.clear();
}
// Called on every new GameSave, except the copy constructor
void GameSave::InitVars()
{
majorVersion = 0;
minorVersion = 0;
waterEEnabled = false;
legacyEnable = false;
gravityEnable = false;
aheatEnable = false;
paused = false;
gravityMode = 0;
airMode = 0;
edgeMode = 0;
translated.x = translated.y = 0;
pmapbits = 8; // default to 8 bits for older saves
}
bool GameSave::Collapsed()
{
return !expanded;
}
void GameSave::Expand()
{
if(hasOriginalData && !expanded)
{
InitVars();
expanded = true;
read(&originalData[0], originalData.size());
}
}
void GameSave::Collapse()
{
if(expanded && hasOriginalData)
{
expanded = false;
dealloc();
signs.clear();
}
}
void GameSave::read(char * data, int dataSize)
{
if(dataSize > 15)
{
if ((data[0]==0x66 && data[1]==0x75 && data[2]==0x43) || (data[0]==0x50 && data[1]==0x53 && data[2]==0x76))
{
readPSv(data, dataSize);
}
else if(data[0] == 'O' && data[1] == 'P' && data[2] == 'S')
{
if (data[3] != '1')
throw ParseException(ParseException::WrongVersion, "Save format from newer version");
readOPS(data, dataSize);
}
else
{
std::cerr << "Got Magic number '" << data[0] << data[1] << data[2] << "'" << std::endl;
throw ParseException(ParseException::Corrupt, "Invalid save format");
}
}
else
{
throw ParseException(ParseException::Corrupt, "No data");
}
}
template <typename T>
T ** GameSave::Allocate2DArray(int blockWidth, int blockHeight, T defaultVal)
{
T ** temp = new T*[blockHeight];
for (int y = 0; y < blockHeight; y++)
{
temp[y] = new T[blockWidth];
std::fill(&temp[y][0], &temp[y][0]+blockWidth, defaultVal);
}
return temp;
}
void GameSave::setSize(int newWidth, int newHeight)
{
this->blockWidth = newWidth;
this->blockHeight = newHeight;
particlesCount = 0;
particles = new Particle[NPART];
blockMap = Allocate2DArray<unsigned char>(blockWidth, blockHeight, 0);
fanVelX = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
fanVelY = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
pressure = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
velocityX = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
velocityY = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
ambientHeat = Allocate2DArray<float>(blockWidth, blockHeight, 0.0f);
}
std::vector<char> GameSave::Serialise()
{
unsigned int dataSize;
char * data = Serialise(dataSize);
if (data == NULL)
return std::vector<char>();
std::vector<char> dataVect(data, data+dataSize);
delete[] data;
return dataVect;
}
char * GameSave::Serialise(unsigned int & dataSize)
{
try
{
return serialiseOPS(dataSize);
}
catch (BuildException & e)
{
std::cout << e.what() << std::endl;
return NULL;
}
}
vector2d GameSave::Translate(vector2d translate)
{
if (Collapsed())
Expand();
float nx, ny;
vector2d pos;
vector2d translateReal = translate;
float minx = 0, miny = 0, maxx = 0, maxy = 0;
// determine minimum and maximum position of all particles / signs
for (size_t i = 0; i < signs.size(); i++)
{
pos = v2d_new(float(signs[i].x), float(signs[i].y));
pos = v2d_add(pos,translate);
nx = floor(pos.x+0.5f);
ny = floor(pos.y+0.5f);
if (nx < minx)
minx = nx;
if (ny < miny)
miny = ny;
if (nx > maxx)
maxx = nx;
if (ny > maxy)
maxy = ny;
}
for (int i = 0; i < particlesCount; i++)
{
if (!particles[i].type) continue;
pos = v2d_new(particles[i].x, particles[i].y);
pos = v2d_add(pos,translate);
nx = floor(pos.x+0.5f);
ny = floor(pos.y+0.5f);
if (nx < minx)
minx = nx;
if (ny < miny)
miny = ny;
if (nx > maxx)
maxx = nx;
if (ny > maxy)
maxy = ny;
}
// determine whether corrections are needed. If moving in this direction would delete stuff, expand the save
vector2d backCorrection = v2d_new(
(minx < 0) ? (-floor(minx / CELL)) : 0,
(miny < 0) ? (-floor(miny / CELL)) : 0
);
int blockBoundsX = int(maxx / CELL) + 1, blockBoundsY = int(maxy / CELL) + 1;
vector2d frontCorrection = v2d_new(
float((blockBoundsX > blockWidth) ? (blockBoundsX - blockWidth) : 0),
float((blockBoundsY > blockHeight) ? (blockBoundsY - blockHeight) : 0)
);
// get new width based on corrections
auto newWidth = int((blockWidth + backCorrection.x + frontCorrection.x) * CELL);
auto newHeight = int((blockHeight + backCorrection.y + frontCorrection.y) * CELL);
if (newWidth > XRES)
frontCorrection.x = backCorrection.x = 0;
if (newHeight > YRES)
frontCorrection.y = backCorrection.y = 0;
// call Transform to do the transformation we wanted when calling this function
translate = v2d_add(translate, v2d_multiply_float(backCorrection, CELL));
Transform(m2d_identity, translate, translateReal,
int((blockWidth + backCorrection.x + frontCorrection.x) * CELL),
int((blockHeight + backCorrection.y + frontCorrection.y) * CELL)
);
// return how much we corrected. This is used to offset the position of the current stamp
// otherwise it would attempt to recenter it with the current size
return v2d_add(v2d_multiply_float(backCorrection, -CELL), v2d_multiply_float(frontCorrection, CELL));
}
void GameSave::Transform(matrix2d transform, vector2d translate)
{
if (Collapsed())
Expand();
int width = blockWidth*CELL, height = blockHeight*CELL, newWidth, newHeight;
vector2d tmp, ctl, cbr;
vector2d cornerso[4];
vector2d translateReal = translate;
// undo any translation caused by rotation
cornerso[0] = v2d_new(0,0);
cornerso[1] = v2d_new(float(width-1),0);
cornerso[2] = v2d_new(0,float(height-1));
cornerso[3] = v2d_new(float(width-1),float(height-1));
for (int i = 0; i < 4; i++)
{
tmp = m2d_multiply_v2d(transform,cornerso[i]);
if (i==0) ctl = cbr = tmp; // top left, bottom right corner
if (tmp.x<ctl.x) ctl.x = tmp.x;
if (tmp.y<ctl.y) ctl.y = tmp.y;
if (tmp.x>cbr.x) cbr.x = tmp.x;
if (tmp.y>cbr.y) cbr.y = tmp.y;
}
// casting as int doesn't quite do what we want with negative numbers, so use floor()
tmp = v2d_new(floor(ctl.x+0.5f),floor(ctl.y+0.5f));
translate = v2d_sub(translate,tmp);
newWidth = int(floor(cbr.x+0.5f))-int(floor(ctl.x+0.5f))+1;
newHeight = int(floor(cbr.y+0.5f))-int(floor(ctl.y+0.5f))+1;
Transform(transform, translate, translateReal, newWidth, newHeight);
}
// transform is a matrix describing how we want to rotate this save
// translate can vary depending on whether the save is bring rotated, or if a normal translate caused it to expand
// translateReal is the original amount we tried to translate, used to calculate wall shifting
void GameSave::Transform(matrix2d transform, vector2d translate, vector2d translateReal, int newWidth, int newHeight)
{
if (Collapsed())
Expand();
if (newWidth>XRES) newWidth = XRES;
if (newHeight>YRES) newHeight = YRES;
int x, y, nx, ny, newBlockWidth = newWidth / CELL, newBlockHeight = newHeight / CELL;
vector2d pos, vel;
unsigned char ** blockMapNew;
float **fanVelXNew, **fanVelYNew, **pressureNew, **velocityXNew, **velocityYNew, **ambientHeatNew;
blockMapNew = Allocate2DArray<unsigned char>(newBlockWidth, newBlockHeight, 0);
fanVelXNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
fanVelYNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
pressureNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
velocityXNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
velocityYNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
ambientHeatNew = Allocate2DArray<float>(newBlockWidth, newBlockHeight, 0.0f);
// * Patch pipes if the transform is (looks close enough to) a 90-degree counter-clockwise rotation.
bool patchPipe90 = fabsf(transform.a * transform.d - transform.b * transform.c - 1) < 1e-3 && fabs(atan2f(transform.b, transform.a) - (0.5f * M_PI)) < 1e-3;
// rotate and translate signs, parts, walls
for (size_t i = 0; i < signs.size(); i++)
{
pos = v2d_new(float(signs[i].x), float(signs[i].y));
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = int(floor(pos.x+0.5f));
ny = int(floor(pos.y+0.5f));
if (nx<0 || nx>=newWidth || ny<0 || ny>=newHeight)
{
signs[i].text[0] = 0;
continue;
}
signs[i].x = nx;
signs[i].y = ny;
}
for (int i = 0; i < particlesCount; i++)
{
if (!particles[i].type) continue;
pos = v2d_new(particles[i].x, particles[i].y);
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = int(floor(pos.x+0.5f));
ny = int(floor(pos.y+0.5f));
if (nx<0 || nx>=newWidth || ny<0 || ny>=newHeight)
{
particles[i].type = PT_NONE;
continue;
}
particles[i].x = float(nx);
particles[i].y = float(ny);
vel = v2d_new(particles[i].vx, particles[i].vy);
vel = m2d_multiply_v2d(transform, vel);
particles[i].vx = vel.x;
particles[i].vy = vel.y;
if (patchPipe90 && (particles[i].type == PT_PIPE || particles[i].type == PT_PPIP))
{
void Element_PIPE_patch90(Particle &part);
Element_PIPE_patch90(particles[i]);
}
}
// translate walls and other grid items when the stamp is shifted more than 4 pixels in any direction
int translateX = 0, translateY = 0;
if (translateReal.x > 0 && ((int)translated.x%CELL == 3
|| (translated.x < 0 && (int)translated.x%CELL == 0)))
translateX = CELL;
else if (translateReal.x < 0 && ((int)translated.x%CELL == -3
|| (translated.x > 0 && (int)translated.x%CELL == 0)))
translateX = -CELL;
if (translateReal.y > 0 && ((int)translated.y%CELL == 3
|| (translated.y < 0 && (int)translated.y%CELL == 0)))
translateY = CELL;
else if (translateReal.y < 0 && ((int)translated.y%CELL == -3
|| (translated.y > 0 && (int)translated.y%CELL == 0)))
translateY = -CELL;
for (y=0; y<blockHeight; y++)
for (x=0; x<blockWidth; x++)
{
pos = v2d_new(x*CELL+CELL*0.4f+translateX, y*CELL+CELL*0.4f+translateY);
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = int(pos.x/CELL);
ny = int(pos.y/CELL);
if (pos.x<0 || nx>=newBlockWidth || pos.y<0 || ny>=newBlockHeight)
continue;
if (blockMap[y][x])
{
blockMapNew[ny][nx] = blockMap[y][x];
if (blockMap[y][x]==WL_FAN)
{
vel = v2d_new(fanVelX[y][x], fanVelY[y][x]);
vel = m2d_multiply_v2d(transform, vel);
fanVelXNew[ny][nx] = vel.x;
fanVelYNew[ny][nx] = vel.y;
}
}
pressureNew[ny][nx] = pressure[y][x];
velocityXNew[ny][nx] = velocityX[y][x];
velocityYNew[ny][nx] = velocityY[y][x];
ambientHeatNew[ny][nx] = ambientHeat[y][x];
}
translated = v2d_add(m2d_multiply_v2d(transform, translated), translateReal);
for (int j = 0; j < blockHeight; j++)
{
delete[] blockMap[j];
delete[] fanVelX[j];
delete[] fanVelY[j];
delete[] pressure[j];
delete[] velocityX[j];
delete[] velocityY[j];
delete[] ambientHeat[j];
}
blockWidth = newBlockWidth;
blockHeight = newBlockHeight;
delete[] blockMap;
delete[] fanVelX;
delete[] fanVelY;
delete[] pressure;
delete[] velocityX;
delete[] velocityY;
delete[] ambientHeat;
blockMap = blockMapNew;
fanVelX = fanVelXNew;
fanVelY = fanVelYNew;
pressure = pressureNew;
velocityX = velocityXNew;
velocityY = velocityYNew;
ambientHeat = ambientHeatNew;
}
void GameSave::CheckBsonFieldUser(bson_iterator iter, const char *field, unsigned char **data, unsigned int *fieldLen)
{
if (!strcmp(bson_iterator_key(&iter), field))
{
if (bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (*fieldLen = bson_iterator_bin_len(&iter)) > 0)
{
*data = (unsigned char*)bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype for %s: %d[%d] %d[%d] %d[%d]\n", field, bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
}
void GameSave::CheckBsonFieldBool(bson_iterator iter, const char *field, bool *flag)
{
if (!strcmp(bson_iterator_key(&iter), field))
{
if (bson_iterator_type(&iter) == BSON_BOOL)
{
*flag = bson_iterator_bool(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
}
void GameSave::CheckBsonFieldInt(bson_iterator iter, const char *field, int *setting)
{
if (!strcmp(bson_iterator_key(&iter), field))
{
if (bson_iterator_type(&iter) == BSON_INT)
{
*setting = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
}
void GameSave::readOPS(char * data, int dataLength)
{
unsigned char *inputData = (unsigned char*)data, *bsonData = NULL, *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL, *soapLinkData = NULL;
unsigned char *pressData = NULL, *vxData = NULL, *vyData = NULL, *ambientData = NULL;
unsigned int inputDataLen = dataLength, bsonDataLen = 0, partsDataLen, partsPosDataLen, fanDataLen, wallDataLen, soapLinkDataLen;
unsigned int pressDataLen, vxDataLen, vyDataLen, ambientDataLen;
unsigned partsCount = 0;
unsigned int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
int savedVersion = inputData[4];
majorVersion = savedVersion;
minorVersion = 0;
bool fakeNewerVersion = false; // used for development builds only
bson b;
b.data = NULL;
bson_iterator iter;
auto bson_deleter = [](bson * b) { bson_destroy(b); };
// Use unique_ptr with a custom deleter to ensure that bson_destroy is called even when an exception is thrown
std::unique_ptr<bson, decltype(bson_deleter)> b_ptr(&b, bson_deleter);
//Block sizes
blockX = 0;
blockY = 0;
blockW = inputData[6];
blockH = inputData[7];
//Full size, normalised
fullX = blockX*CELL;
fullY = blockY*CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
//From newer version
if (savedVersion > SAVE_VERSION)
{
fromNewerVersion = true;
//throw ParseException(ParseException::WrongVersion, "Save from newer version");
}
//Incompatible cell size
if (inputData[5] != CELL)
throw ParseException(ParseException::InvalidDimensions, "Incorrect CELL size");
//Too large/off screen
if (blockX+blockW > XRES/CELL || blockY+blockH > YRES/CELL)
throw ParseException(ParseException::InvalidDimensions, "Save too large");
setSize(blockW, blockH);
bsonDataLen = ((unsigned)inputData[8]);
bsonDataLen |= ((unsigned)inputData[9]) << 8;
bsonDataLen |= ((unsigned)inputData[10]) << 16;
bsonDataLen |= ((unsigned)inputData[11]) << 24;
//Check for overflows, don't load saves larger than 200MB
unsigned int toAlloc = bsonDataLen+1;
if (toAlloc > 209715200 || !toAlloc)
throw ParseException(ParseException::InvalidDimensions, "Save data too large, refusing");
bsonData = (unsigned char*)malloc(toAlloc);
if (!bsonData)
throw ParseException(ParseException::InternalError, "Unable to allocate memory");
//Make sure bsonData is null terminated, since all string functions need null terminated strings
//(bson_iterator_key returns a pointer into bsonData, which is then used with strcmp)
bsonData[bsonDataLen] = 0;
int bz2ret;
if ((bz2ret = BZ2_bzBuffToBuffDecompress((char*)bsonData, &bsonDataLen, (char*)(inputData+12), inputDataLen-12, 0, 0)) != BZ_OK)
{
throw ParseException(ParseException::Corrupt, String::Build("Unable to decompress (ret ", bz2ret, ")"));
}
set_bson_err_handler([](const char* err) { throw ParseException(ParseException::Corrupt, "BSON error when parsing save: " + ByteString(err).FromUtf8()); });
bson_init_data_size(&b, (char*)bsonData, bsonDataLen);
bson_iterator_init(&iter, &b);
std::vector<sign> tempSigns;
while (bson_iterator_next(&iter))
{
CheckBsonFieldUser(iter, "parts", &partsData, &partsDataLen);
CheckBsonFieldUser(iter, "partsPos", &partsPosData, &partsPosDataLen);
CheckBsonFieldUser(iter, "wallMap", &wallData, &wallDataLen);
CheckBsonFieldUser(iter, "pressMap", &pressData, &pressDataLen);
CheckBsonFieldUser(iter, "vxMap", &vxData, &vxDataLen);
CheckBsonFieldUser(iter, "vyMap", &vyData, &vyDataLen);
CheckBsonFieldUser(iter, "ambientMap", &ambientData, &ambientDataLen);
CheckBsonFieldUser(iter, "fanMap", &fanData, &fanDataLen);
CheckBsonFieldUser(iter, "soapLinks", &soapLinkData, &soapLinkDataLen);
CheckBsonFieldBool(iter, "legacyEnable", &legacyEnable);
CheckBsonFieldBool(iter, "gravityEnable", &gravityEnable);
CheckBsonFieldBool(iter, "aheat_enable", &aheatEnable);
CheckBsonFieldBool(iter, "waterEEnabled", &waterEEnabled);
CheckBsonFieldBool(iter, "paused", &paused);
CheckBsonFieldInt(iter, "gravityMode", &gravityMode);
CheckBsonFieldInt(iter, "airMode", &airMode);
CheckBsonFieldInt(iter, "edgeMode", &edgeMode);
CheckBsonFieldInt(iter, "pmapbits", &pmapbits);
if (!strcmp(bson_iterator_key(&iter), "signs"))
{
if (bson_iterator_type(&iter)==BSON_ARRAY)
{
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while (bson_iterator_next(&subiter))
{
if (!strcmp(bson_iterator_key(&subiter), "sign"))
{
if (bson_iterator_type(&subiter) == BSON_OBJECT)
{
bson_iterator signiter;
bson_iterator_subiterator(&subiter, &signiter);
sign tempSign("", 0, 0, sign::Left);
while (bson_iterator_next(&signiter))
{
if (!strcmp(bson_iterator_key(&signiter), "text") && bson_iterator_type(&signiter) == BSON_STRING)
{
tempSign.text = format::CleanString(ByteString(bson_iterator_string(&signiter)).FromUtf8(), true, true, true).Substr(0, 45);
if (majorVersion < 94 || (majorVersion == 94 && minorVersion < 2))
{
if (tempSign.text == "{t}")
{
tempSign.text = "Temp: {t}";
}
else if (tempSign.text == "{p}")
{
tempSign.text = "Pressure: {p}";
}
}
}
else if (!strcmp(bson_iterator_key(&signiter), "justification") && bson_iterator_type(&signiter) == BSON_INT)
{
tempSign.ju = (sign::Justification)bson_iterator_int(&signiter);
}
else if (!strcmp(bson_iterator_key(&signiter), "x") && bson_iterator_type(&signiter) == BSON_INT)
{
tempSign.x = bson_iterator_int(&signiter)+fullX;
}
else if (!strcmp(bson_iterator_key(&signiter), "y") && bson_iterator_type(&signiter) == BSON_INT)
{
tempSign.y = bson_iterator_int(&signiter)+fullY;
}
else
{
fprintf(stderr, "Unknown sign property %s\n", bson_iterator_key(&signiter));
}
}
tempSigns.push_back(tempSign);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&subiter));
}
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if (!strcmp(bson_iterator_key(&iter), "stkm"))
{
if (bson_iterator_type(&iter) == BSON_OBJECT)
{
bson_iterator stkmiter;
bson_iterator_subiterator(&iter, &stkmiter);
while (bson_iterator_next(&stkmiter))
{
CheckBsonFieldBool(stkmiter, "rocketBoots1", &stkm.rocketBoots1);
CheckBsonFieldBool(stkmiter, "rocketBoots2", &stkm.rocketBoots2);
CheckBsonFieldBool(stkmiter, "fan1", &stkm.fan1);
CheckBsonFieldBool(stkmiter, "fan2", &stkm.fan2);
if (!strcmp(bson_iterator_key(&stkmiter), "rocketBootsFigh") && bson_iterator_type(&stkmiter) == BSON_ARRAY)
{
bson_iterator fighiter;
bson_iterator_subiterator(&stkmiter, &fighiter);
while (bson_iterator_next(&fighiter))
{
if (bson_iterator_type(&fighiter) == BSON_INT)
stkm.rocketBootsFigh.push_back(bson_iterator_int(&fighiter));
}
}
else if (!strcmp(bson_iterator_key(&stkmiter), "fanFigh") && bson_iterator_type(&stkmiter) == BSON_ARRAY)
{
bson_iterator fighiter;
bson_iterator_subiterator(&stkmiter, &fighiter);
while (bson_iterator_next(&fighiter))
{
if (bson_iterator_type(&fighiter) == BSON_INT)
stkm.fanFigh.push_back(bson_iterator_int(&fighiter));
}
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if (!strcmp(bson_iterator_key(&iter), "palette"))
{
palette.clear();
if (bson_iterator_type(&iter) == BSON_ARRAY)
{
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while (bson_iterator_next(&subiter))
{
if (bson_iterator_type(&subiter) == BSON_INT)
{
ByteString id = bson_iterator_key(&subiter);
int num = bson_iterator_int(&subiter);
palette.push_back(PaletteItem(id, num));
}
}
}
}
else if (!strcmp(bson_iterator_key(&iter), "origin"))
{
if (bson_iterator_type(&iter) == BSON_OBJECT)
{
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while (bson_iterator_next(&subiter))
{
if (bson_iterator_type(&subiter) == BSON_INT)
{
if (!strcmp(bson_iterator_key(&subiter), "minorVersion"))
{
minorVersion = bson_iterator_int(&subiter);
}
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if (!strcmp(bson_iterator_key(&iter), "minimumVersion"))
{
if (bson_iterator_type(&iter) == BSON_OBJECT)
{
int major = INT_MAX, minor = INT_MAX;
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while (bson_iterator_next(&subiter))
{
if (bson_iterator_type(&subiter) == BSON_INT)
{
if (!strcmp(bson_iterator_key(&subiter), "major"))
major = bson_iterator_int(&subiter);
else if (!strcmp(bson_iterator_key(&subiter), "minor"))
minor = bson_iterator_int(&subiter);
}
}
#if defined(SNAPSHOT) || defined(BETA) || defined(DEBUG) || MOD_ID > 0
if (major > FUTURE_SAVE_VERSION || (major == FUTURE_SAVE_VERSION && minor > FUTURE_MINOR_VERSION))
#else
if (major > SAVE_VERSION || (major == SAVE_VERSION && minor > MINOR_VERSION))
#endif
{
String errorMessage = String::Build("Save from a newer version: Requires version ", major, ".", minor);
throw ParseException(ParseException::WrongVersion, errorMessage);
}
#if defined(SNAPSHOT) || defined(BETA) || defined(DEBUG) || MOD_ID > 0
else if (major > SAVE_VERSION || (major == SAVE_VERSION && minor > MINOR_VERSION))
fakeNewerVersion = true;
#endif
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
#ifndef RENDERER
else if (!strcmp(bson_iterator_key(&iter), "authors"))
{
if (bson_iterator_type(&iter) == BSON_OBJECT)
{
// we need to clear authors because the save may be read multiple times in the stamp browser (loading and rendering twice)
// seems inefficient ...
authors.clear();
ConvertBsonToJson(&iter, &authors);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
#endif
}
//Read wall and fan data
if(wallData)
{
unsigned int j = 0;
if (blockW * blockH > wallDataLen)
throw ParseException(ParseException::Corrupt, "Not enough wall data");
for (unsigned int x = 0; x < blockW; x++)
{
for (unsigned int y = 0; y < blockH; y++)
{
if (wallData[y*blockW+x])
blockMap[blockY+y][blockX+x] = wallData[y*blockW+x];
if (blockMap[y][x]==O_WL_WALLELEC)
blockMap[y][x]=WL_WALLELEC;
if (blockMap[y][x]==O_WL_EWALL)
blockMap[y][x]=WL_EWALL;
if (blockMap[y][x]==O_WL_DETECT)
blockMap[y][x]=WL_DETECT;
if (blockMap[y][x]==O_WL_STREAM)
blockMap[y][x]=WL_STREAM;
if (blockMap[y][x]==O_WL_FAN||blockMap[y][x]==O_WL_FANHELPER)
blockMap[y][x]=WL_FAN;
if (blockMap[y][x]==O_WL_ALLOWLIQUID)
blockMap[y][x]=WL_ALLOWLIQUID;
if (blockMap[y][x]==O_WL_DESTROYALL)
blockMap[y][x]=WL_DESTROYALL;
if (blockMap[y][x]==O_WL_ERASE)
blockMap[y][x]=WL_ERASE;
if (blockMap[y][x]==O_WL_WALL)
blockMap[y][x]=WL_WALL;
if (blockMap[y][x]==O_WL_ALLOWAIR)
blockMap[y][x]=WL_ALLOWAIR;
if (blockMap[y][x]==O_WL_ALLOWSOLID)
blockMap[y][x]=WL_ALLOWPOWDER;
if (blockMap[y][x]==O_WL_ALLOWALLELEC)
blockMap[y][x]=WL_ALLOWALLELEC;
if (blockMap[y][x]==O_WL_EHOLE)
blockMap[y][x]=WL_EHOLE;
if (blockMap[y][x]==O_WL_ALLOWGAS)
blockMap[y][x]=WL_ALLOWGAS;
if (blockMap[y][x]==O_WL_GRAV)
blockMap[y][x]=WL_GRAV;
if (blockMap[y][x]==O_WL_ALLOWENERGY)
blockMap[y][x]=WL_ALLOWENERGY;
if (blockMap[y][x] == WL_FAN && fanData)
{
if(j+1 >= fanDataLen)
{
fprintf(stderr, "Not enough fan data\n");
}
fanVelX[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
fanVelY[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
}
if (blockMap[y][x] >= UI_WALLCOUNT)
blockMap[y][x] = 0;
}
}
}
//Read pressure data
if (pressData)
{
unsigned int j = 0;
unsigned char i, i2;
if (blockW * blockH > pressDataLen)
throw ParseException(ParseException::Corrupt, "Not enough pressure data");
for (unsigned int x = 0; x < blockW; x++)
{
for (unsigned int y = 0; y < blockH; y++)
{
i = pressData[j++];
i2 = pressData[j++];
pressure[blockY+y][blockX+x] = ((i+(i2<<8))/128.0f)-256;
}
}
hasPressure = true;
}
//Read vx data
if (vxData)
{
unsigned int j = 0;
unsigned char i, i2;
if (blockW * blockH > vxDataLen)
throw ParseException(ParseException::Corrupt, "Not enough vx data");
for (unsigned int x = 0; x < blockW; x++)
{
for (unsigned int y = 0; y < blockH; y++)
{
i = vxData[j++];
i2 = vxData[j++];
velocityX[blockY+y][blockX+x] = ((i+(i2<<8))/128.0f)-256;
}
}
}
//Read vy data
if (vyData)
{
unsigned int j = 0;
unsigned char i, i2;
if (blockW * blockH > vyDataLen)
throw ParseException(ParseException::Corrupt, "Not enough vy data");
for (unsigned int x = 0; x < blockW; x++)
{
for (unsigned int y = 0; y < blockH; y++)
{
i = vyData[j++];
i2 = vyData[j++];
velocityY[blockY+y][blockX+x] = ((i+(i2<<8))/128.0f)-256;
}
}
}
//Read ambient data
if (ambientData)
{
unsigned int i = 0, tempTemp;
if (blockW * blockH > ambientDataLen)
throw ParseException(ParseException::Corrupt, "Not enough ambient heat data");
for (unsigned int x = 0; x < blockW; x++)
{
for (unsigned int y = 0; y < blockH; y++)
{
tempTemp = ambientData[i++];
tempTemp |= (((unsigned)ambientData[i++]) << 8);
ambientHeat[blockY+y][blockX+x] = float(tempTemp);
}
}
hasAmbientHeat = true;
}
//Read particle data
if (partsData && partsPosData)
{
int newIndex = 0, fieldDescriptor, tempTemp;
int posCount, posTotal, partsPosDataIndex = 0;
if (fullW * fullH * 3 > partsPosDataLen)
throw ParseException(ParseException::Corrupt, "Not enough particle position data");
partsCount = 0;
unsigned int i = 0;
unsigned int saved_x, saved_y, x, y;
newIndex = 0;
for (saved_y = 0; saved_y < fullH; saved_y++)
{
for (saved_x = 0; saved_x < fullW; saved_x++)
{
//Read total number of particles at this position
posTotal = 0;
posTotal |= partsPosData[partsPosDataIndex++]<<16;
posTotal |= partsPosData[partsPosDataIndex++]<<8;
posTotal |= partsPosData[partsPosDataIndex++];
//Put the next posTotal particles at this position
for (posCount = 0; posCount < posTotal; posCount++)
{
particlesCount = newIndex+1;
//i+3 because we have 4 bytes of required fields (type (1), descriptor (2), temp (1))
if (i+3 >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer");
x = saved_x + fullX;
y = saved_y + fullY;
fieldDescriptor = partsData[i+1];
fieldDescriptor |= partsData[i+2] << 8;
if (x >= fullW || y >= fullH)
throw ParseException(ParseException::Corrupt, "Particle out of range");
if (newIndex < 0 || newIndex >= NPART)
throw ParseException(ParseException::Corrupt, "Too many particles");
//Clear the particle, ready for our new properties
memset(&(particles[newIndex]), 0, sizeof(Particle));
//Required fields
particles[newIndex].type = partsData[i];
particles[newIndex].x = float(x);
particles[newIndex].y = float(y);
i+=3;
// Read type (2nd byte)
if (fieldDescriptor & 0x4000)
particles[newIndex].type |= (((unsigned)partsData[i++]) << 8);
//Read temp
if(fieldDescriptor & 0x01)
{
//Full 16bit int
tempTemp = partsData[i++];
tempTemp |= (((unsigned)partsData[i++]) << 8);
particles[newIndex].temp = float(tempTemp);
}
else
{
//1 Byte room temp offset
tempTemp = (char)partsData[i++];
particles[newIndex].temp = tempTemp+294.15f;
}
//Read life
if(fieldDescriptor & 0x02)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading life");
particles[newIndex].life = partsData[i++];
//i++;
//Read 2nd byte
if(fieldDescriptor & 0x04)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading life");
particles[newIndex].life |= (((unsigned)partsData[i++]) << 8);
}
}
//Read tmp
if(fieldDescriptor & 0x08)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading tmp");
particles[newIndex].tmp = partsData[i++];
//Read 2nd byte
if(fieldDescriptor & 0x10)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading tmp");
particles[newIndex].tmp |= (((unsigned)partsData[i++]) << 8);
//Read 3rd and 4th bytes
if(fieldDescriptor & 0x1000)
{
if (i+1 >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading tmp");
particles[newIndex].tmp |= (((unsigned)partsData[i++]) << 24);
particles[newIndex].tmp |= (((unsigned)partsData[i++]) << 16);
}
}
}
//Read ctype
if(fieldDescriptor & 0x20)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading ctype");
particles[newIndex].ctype = partsData[i++];
//Read additional bytes
if(fieldDescriptor & 0x200)
{
if (i+2 >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading ctype");
particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 24);
particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 16);
particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 8);
}
}
//Read dcolour
if(fieldDescriptor & 0x40)
{
if (i+3 >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading deco");
particles[newIndex].dcolour = (((unsigned)partsData[i++]) << 24);
particles[newIndex].dcolour |= (((unsigned)partsData[i++]) << 16);
particles[newIndex].dcolour |= (((unsigned)partsData[i++]) << 8);
particles[newIndex].dcolour |= ((unsigned)partsData[i++]);
}
//Read vx
if(fieldDescriptor & 0x80)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading vx");
particles[newIndex].vx = (partsData[i++]-127.0f)/16.0f;
}
//Read vy
if(fieldDescriptor & 0x100)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading vy");
particles[newIndex].vy = (partsData[i++]-127.0f)/16.0f;
}
//Read tmp2
if(fieldDescriptor & 0x400)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading tmp2");
particles[newIndex].tmp2 = partsData[i++];
if(fieldDescriptor & 0x800)
{
if (i >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading tmp2");
particles[newIndex].tmp2 |= (((unsigned)partsData[i++]) << 8);
}
}
//Read pavg
if(fieldDescriptor & 0x2000)
{
if (i+3 >= partsDataLen)
throw ParseException(ParseException::Corrupt, "Ran past particle data buffer while loading pavg");
int pavg;
pavg = partsData[i++];
pavg |= (((unsigned)partsData[i++]) << 8);
particles[newIndex].pavg[0] = (float)pavg;
pavg = partsData[i++];
pavg |= (((unsigned)partsData[i++]) << 8);
particles[newIndex].pavg[1] = (float)pavg;
switch (particles[newIndex].type)
{
// List of elements that save pavg with a multiplicative bias of 2**6
// (or not at all if pressure is not saved).
// If you change this list, change it in Simulation::Load and GameSave::serialiseOPS too!
case PT_QRTZ:
case PT_GLAS:
case PT_TUNG:
particles[newIndex].pavg[0] /= 64;
particles[newIndex].pavg[1] /= 64;
break;
}
}
//Particle specific parsing:
switch(particles[newIndex].type)
{
case PT_SOAP:
//Clear soap links, links will be added back in if soapLinkData is present
particles[newIndex].ctype &= ~6;
break;
case PT_BOMB:
if (particles[newIndex].tmp!=0 && savedVersion < 81)
{
particles[newIndex].type = PT_EMBR;
particles[newIndex].ctype = 0;
if (particles[newIndex].tmp==1)
particles[newIndex].tmp = 0;
}
break;
case PT_DUST:
if (particles[newIndex].life>0 && savedVersion < 81)
{
particles[newIndex].type = PT_EMBR;
particles[newIndex].ctype = (particles[newIndex].tmp2<<16) | (particles[newIndex].tmp<<8) | particles[newIndex].ctype;
particles[newIndex].tmp = 1;
}
break;
case PT_FIRW:
if (particles[newIndex].tmp>=2 && savedVersion < 81)
{
auto caddress = int(restrict_flt(float(particles[newIndex].tmp-4), 0.0f, 199.0f)) * 3;
particles[newIndex].type = PT_EMBR;
particles[newIndex].tmp = 1;
particles[newIndex].ctype = (((firw_data[caddress]))<<16) | (((firw_data[caddress+1]))<<8) | ((firw_data[caddress+2]));
}
break;
case PT_PSTN:
if (savedVersion < 87 && particles[newIndex].ctype)
particles[newIndex].life = 1;
if (savedVersion < 91)
particles[newIndex].temp = 283.15f;
break;
case PT_FILT:
if (savedVersion < 89)
{
if (particles[newIndex].tmp<0 || particles[newIndex].tmp>3)
particles[newIndex].tmp = 6;
particles[newIndex].ctype = 0;
}
break;
case PT_QRTZ:
case PT_PQRT:
if (savedVersion < 89)
{
particles[newIndex].tmp2 = particles[newIndex].tmp;
particles[newIndex].tmp = particles[newIndex].ctype;
particles[newIndex].ctype = 0;
}
break;
case PT_PHOT:
if (savedVersion < 90)
{
particles[newIndex].flags |= FLAG_PHOTDECO;
}
break;
case PT_VINE:
if (savedVersion < 91)
{
particles[newIndex].tmp = 1;
}
break;
case PT_DLAY:
// correct DLAY temperature in older saves
// due to either the +.5f now done in DLAY (higher temps), or rounding errors in the old DLAY code (room temperature temps),
// the delay in all DLAY from older versions will always be one greater than it should
if (savedVersion < 91)
{
particles[newIndex].temp = particles[newIndex].temp - 1.0f;
}
break;
case PT_CRAY:
if (savedVersion < 91)
{
if (particles[newIndex].tmp2)
{
particles[newIndex].ctype |= particles[newIndex].tmp2<<8;
particles[newIndex].tmp2 = 0;
}
}
break;
case PT_CONV:
if (savedVersion < 91)
{
if (particles[newIndex].tmp)
{
particles[newIndex].ctype |= particles[newIndex].tmp<<8;
particles[newIndex].tmp = 0;
}
}
break;
case PT_PIPE:
case PT_PPIP:
if (savedVersion < 93 && !fakeNewerVersion)
{
if (particles[newIndex].ctype == 1)
particles[newIndex].tmp |= 0x00020000; //PFLAG_INITIALIZING
particles[newIndex].tmp |= (particles[newIndex].ctype-1)<<18;
particles[newIndex].ctype = particles[newIndex].tmp&0xFF;
}
break;
case PT_TSNS:
case PT_HSWC:
case PT_PSNS:
case PT_PUMP:
if (savedVersion < 93 && !fakeNewerVersion)
{
particles[newIndex].tmp = 0;
}
break;
case PT_LIFE:
if (savedVersion < 96 && !fakeNewerVersion)
{
if (particles[newIndex].ctype >= 0 && particles[newIndex].ctype < NGOL)
{
particles[newIndex].tmp2 = particles[newIndex].tmp;
particles[newIndex].dcolour = builtinGol[particles[newIndex].ctype].colour;
particles[newIndex].tmp = builtinGol[particles[newIndex].ctype].colour2;
}
}
}
//note: PSv was used in version 77.0 and every version before, add something in PSv too if the element is that old
newIndex++;
partsCount++;
}
}
}
if (i != partsDataLen)
throw ParseException(ParseException::Corrupt, "Didn't reach end of particle data buffer");
}
if (soapLinkData)
{
unsigned int soapLinkDataPos = 0;
for (unsigned int i = 0; i < partsCount; i++)
{
if (particles[i].type == PT_SOAP)
{
// Get the index of the particle forward linked from this one, if present in the save data
unsigned int linkedIndex = 0;
if (soapLinkDataPos+3 > soapLinkDataLen) break;
linkedIndex |= soapLinkData[soapLinkDataPos++]<<16;
linkedIndex |= soapLinkData[soapLinkDataPos++]<<8;
linkedIndex |= soapLinkData[soapLinkDataPos++];
// All indexes in soapLinkData and partsSimIndex have 1 added to them (0 means not saved/loaded)
if (!linkedIndex || linkedIndex-1 >= partsCount)
continue;
linkedIndex = linkedIndex-1;
//Attach the two particles
particles[i].ctype |= 2;
particles[i].tmp = linkedIndex;
particles[linkedIndex].ctype |= 4;
particles[linkedIndex].tmp2 = i;
}
}
}
if (tempSigns.size())
{
for (size_t i = 0; i < tempSigns.size(); i++)
{
if(signs.size() == MAXSIGNS)
break;
signs.push_back(tempSigns[i]);
}
}
}
void GameSave::readPSv(char * saveDataChar, int dataLength)
{
unsigned char * saveData = (unsigned char *)saveDataChar;
int q,j,k,x,y,p=0, ver, pty, ty, legacy_beta=0;
int bx0=0, by0=0, bw, bh, w, h, y0 = 0, x0 = 0;
int new_format = 0, ttv = 0;
std::vector<sign> tempSigns;
char tempSignText[255];
sign tempSign("", 0, 0, sign::Left);
std::vector<Element> elements = GetElements();
//New file header uses PSv, replacing fuC. This is to detect if the client uses a new save format for temperatures
//This creates a problem for old clients, that display and "corrupt" error instead of a "newer version" error
if (dataLength<16)
throw ParseException(ParseException::Corrupt, "No save data");
if (!(saveData[2]==0x43 && saveData[1]==0x75 && saveData[0]==0x66) && !(saveData[2]==0x76 && saveData[1]==0x53 && saveData[0]==0x50))
throw ParseException(ParseException::Corrupt, "Unknown format");
if (saveData[2]==0x76 && saveData[1]==0x53 && saveData[0]==0x50) {
new_format = 1;
}
if (saveData[4]>SAVE_VERSION)
throw ParseException(ParseException::WrongVersion, "Save from newer version");
ver = saveData[4];
majorVersion = saveData[4];
minorVersion = 0;
if (ver<34)
{
legacyEnable = 1;
}
else
{
if (ver>=44) {
legacyEnable = saveData[3]&0x01;
paused = (saveData[3]>>1)&0x01;
if (ver>=46) {
gravityMode = ((saveData[3]>>2)&0x03);// | ((c[3]>>2)&0x01);
airMode = ((saveData[3]>>4)&0x07);// | ((c[3]>>4)&0x02) | ((c[3]>>4)&0x01);
}
if (ver>=49) {
gravityEnable = ((saveData[3]>>7)&0x01);
}
} else {
if (saveData[3]==1||saveData[3]==0) {
legacyEnable = saveData[3];
} else {
legacy_beta = 1;
}
}
}
bw = saveData[6];
bh = saveData[7];
if (bx0+bw > XRES/CELL)
bx0 = XRES/CELL - bw;
if (by0+bh > YRES/CELL)
by0 = YRES/CELL - bh;
if (bx0 < 0)
bx0 = 0;
if (by0 < 0)
by0 = 0;
if (saveData[5]!=CELL || bx0+bw>XRES/CELL || by0+bh>YRES/CELL)
throw ParseException(ParseException::InvalidDimensions, "Save too large");
int size = (unsigned)saveData[8];
size |= ((unsigned)saveData[9])<<8;
size |= ((unsigned)saveData[10])<<16;
size |= ((unsigned)saveData[11])<<24;
if (size > 209715200 || !size)
throw ParseException(ParseException::InvalidDimensions, "Save data too large");
auto dataPtr = std::unique_ptr<unsigned char[]>(new unsigned char[size]);
unsigned char *data = dataPtr.get();
if (!data)
throw ParseException(ParseException::Corrupt, "Cannot allocate memory");
setSize(bw, bh);
int bzStatus = 0;
if ((bzStatus = BZ2_bzBuffToBuffDecompress((char *)data, (unsigned *)&size, (char *)(saveData+12), dataLength-12, 0, 0)))
throw ParseException(ParseException::Corrupt, String::Build("Cannot decompress: ", bzStatus));
dataLength = size;
#ifdef DEBUG
std::cout << "Parsing " << dataLength << " bytes of data, version " << ver << std::endl;
#endif
if (dataLength < bw*bh)
throw ParseException(ParseException::Corrupt, "Save data corrupt (missing data)");
// normalize coordinates
x0 = bx0*CELL;
y0 = by0*CELL;
w = bw *CELL;
h = bh *CELL;
if (ver<46) {
gravityMode = 0;
airMode = 0;
}
auto particleIDMapPtr = std::unique_ptr<int[]>(new int[XRES*YRES]);
int *particleIDMap = particleIDMapPtr.get();
std::fill(&particleIDMap[0], &particleIDMap[XRES*YRES], 0);
if (!particleIDMap)
throw ParseException(ParseException::Corrupt, "Cannot allocate memory");
// load the required air state
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
{
if (data[p])
{
//In old saves, ignore walls created by sign tool bug
//Not ignoring other invalid walls or invalid walls in new saves, so that any other bugs causing them are easier to notice, find and fix
if (ver>=44 && ver<71 && data[p]==O_WL_SIGN)
{
p++;
continue;
}
blockMap[y][x] = data[p];
if (blockMap[y][x]==1)
blockMap[y][x]=WL_WALL;
else if (blockMap[y][x]==2)
blockMap[y][x]=WL_DESTROYALL;
else if (blockMap[y][x]==3)
blockMap[y][x]=WL_ALLOWLIQUID;
else if (blockMap[y][x]==4)
blockMap[y][x]=WL_FAN;
else if (blockMap[y][x]==5)
blockMap[y][x]=WL_STREAM;
else if (blockMap[y][x]==6)
blockMap[y][x]=WL_DETECT;
else if (blockMap[y][x]==7)
blockMap[y][x]=WL_EWALL;
else if (blockMap[y][x]==8)
blockMap[y][x]=WL_WALLELEC;
else if (blockMap[y][x]==9)
blockMap[y][x]=WL_ALLOWAIR;
else if (blockMap[y][x]==10)
blockMap[y][x]=WL_ALLOWPOWDER;
else if (blockMap[y][x]==11)
blockMap[y][x]=WL_ALLOWALLELEC;
else if (blockMap[y][x]==12)
blockMap[y][x]=WL_EHOLE;
else if (blockMap[y][x]==13)
blockMap[y][x]=WL_ALLOWGAS;
if (ver>=44)
{
/* The numbers used to save walls were changed, starting in v44.
* The new numbers are ignored for older versions due to some corruption of bmap in saves from older versions.
*/
if (blockMap[y][x]==O_WL_WALLELEC)
blockMap[y][x]=WL_WALLELEC;
else if (blockMap[y][x]==O_WL_EWALL)
blockMap[y][x]=WL_EWALL;
else if (blockMap[y][x]==O_WL_DETECT)
blockMap[y][x]=WL_DETECT;
else if (blockMap[y][x]==O_WL_STREAM)
blockMap[y][x]=WL_STREAM;
else if (blockMap[y][x]==O_WL_FAN||blockMap[y][x]==O_WL_FANHELPER)
blockMap[y][x]=WL_FAN;
else if (blockMap[y][x]==O_WL_ALLOWLIQUID)
blockMap[y][x]=WL_ALLOWLIQUID;
else if (blockMap[y][x]==O_WL_DESTROYALL)
blockMap[y][x]=WL_DESTROYALL;
else if (blockMap[y][x]==O_WL_ERASE)
blockMap[y][x]=WL_ERASE;
else if (blockMap[y][x]==O_WL_WALL)
blockMap[y][x]=WL_WALL;
else if (blockMap[y][x]==O_WL_ALLOWAIR)
blockMap[y][x]=WL_ALLOWAIR;
else if (blockMap[y][x]==O_WL_ALLOWSOLID)
blockMap[y][x]=WL_ALLOWPOWDER;
else if (blockMap[y][x]==O_WL_ALLOWALLELEC)
blockMap[y][x]=WL_ALLOWALLELEC;
else if (blockMap[y][x]==O_WL_EHOLE)
blockMap[y][x]=WL_EHOLE;
else if (blockMap[y][x]==O_WL_ALLOWGAS)
blockMap[y][x]=WL_ALLOWGAS;
else if (blockMap[y][x]==O_WL_GRAV)
blockMap[y][x]=WL_GRAV;
else if (blockMap[y][x]==O_WL_ALLOWENERGY)
blockMap[y][x]=WL_ALLOWENERGY;
}
if (blockMap[y][x] >= UI_WALLCOUNT)
blockMap[y][x] = 0;
}
p++;
}
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (data[(y-by0)*bw+(x-bx0)]==4||(ver>=44 && data[(y-by0)*bw+(x-bx0)]==O_WL_FAN))
{
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
fanVelX[y][x] = (data[p++]-127.0f)/64.0f;
}
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (data[(y-by0)*bw+(x-bx0)]==4||(ver>=44 && data[(y-by0)*bw+(x-bx0)]==O_WL_FAN))
{
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
fanVelY[y][x] = (data[p++]-127.0f)/64.0f;
}
// load the particle map
int i = 0;
k = 0;
pty = p;
for (y=y0; y<y0+h; y++)
for (x=x0; x<x0+w; x++)
{
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
j=data[p++];
if (j >= PT_NUM) {
j = PT_DUST;//throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (j)
{
memset(particles+k, 0, sizeof(Particle));
particles[k].type = j;
if (j == PT_COAL)
particles[k].tmp = 50;
if (j == PT_FUSE)
particles[k].tmp = 50;
if (j == PT_PHOT)
particles[k].ctype = 0x3fffffff;
if (j == PT_SOAP)
particles[k].ctype = 0;
if (j==PT_BIZR || j==PT_BIZRG || j==PT_BIZRS)
particles[k].ctype = 0x47FFFF;
particles[k].x = (float)x;
particles[k].y = (float)y;
particleIDMap[(x-x0)+(y-y0)*w] = k+1;
particlesCount = ++k;
}
}
// load particle properties
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
i--;
if (p+1 >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
if (i < NPART)
{
particles[i].vx = (data[p++]-127.0f)/16.0f;
particles[i].vy = (data[p++]-127.0f)/16.0f;
}
else
p += 2;
}
}
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (ver>=44) {
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
ttv = (data[p++])<<8;
ttv |= (data[p++]);
particles[i-1].life = ttv;
} else {
p+=2;
}
} else {
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
if (i <= NPART)
particles[i-1].life = data[p++]*4;
else
p++;
}
}
}
if (ver>=44) {
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
ttv = (data[p++])<<8;
ttv |= (data[p++]);
particles[i-1].tmp = ttv;
if (ver<53 && !particles[i-1].tmp)
for (q = 0; q < NGOL; q++) {
if (particles[i-1].type==builtinGol[q].oldtype && (builtinGol[q].ruleset >> 17)==0)
particles[i-1].tmp = (builtinGol[q].ruleset >> 17)+1;
}
if (ver>=51 && ver<53 && particles[i-1].type==PT_PBCN)
{
particles[i-1].tmp2 = particles[i-1].tmp;
particles[i-1].tmp = 0;
}
} else {
p+=2;
}
}
}
}
if (ver>=53) {
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
ty = data[pty+j];
if (i && (ty==PT_PBCN || (ty==PT_TRON && ver>=77)))
{
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
if (i <= NPART)
particles[i-1].tmp2 = data[p++];
else
p++;
}
}
}
//Read ALPHA component
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (ver>=49) {
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
particles[i-1].dcolour = data[p++]<<24;
} else {
p++;
}
}
}
}
//Read RED component
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (ver>=49) {
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
particles[i-1].dcolour |= data[p++]<<16;
} else {
p++;
}
}
}
}
//Read GREEN component
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (ver>=49) {
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
particles[i-1].dcolour |= data[p++]<<8;
} else {
p++;
}
}
}
}
//Read BLUE component
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
if (i)
{
if (ver>=49) {
if (p >= dataLength) {
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART) {
particles[i-1].dcolour |= data[p++];
} else {
p++;
}
}
}
}
for (j=0; j<w*h; j++)
{
i = particleIDMap[j];
ty = data[pty+j];
if (i)
{
if (ver>=34&&legacy_beta==0)
{
if (p >= dataLength)
{
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
}
if (i <= NPART)
{
if (ver>=42) {
if (new_format) {
ttv = (data[p++])<<8;
ttv |= (data[p++]);
if (particles[i-1].type==PT_PUMP) {
particles[i-1].temp = ttv + 0.15;//fix PUMP saved at 0, so that it loads at 0.
} else {
particles[i-1].temp = float(ttv);
}
} else {
particles[i-1].temp = float((data[p++]*((MAX_TEMP+(-MIN_TEMP))/255))+MIN_TEMP);
}
} else {
particles[i-1].temp = float(((data[p++]*((O_MAX_TEMP+(-O_MIN_TEMP))/255))+O_MIN_TEMP)+273);
}
}
else
{
p++;
if (new_format) {
p++;
}
}
}
else
{
particles[i-1].temp = elements[particles[i-1].type].DefaultProperties.temp;
}
}
}
for (j=0; j<w*h; j++)
{
int gnum = 0;
i = particleIDMap[j];
ty = data[pty+j];
if (i && (ty==PT_CLNE || (ty==PT_PCLN && ver>=43) || (ty==PT_BCLN && ver>=44) || (ty==PT_SPRK && ver>=21) || (ty==PT_LAVA && ver>=34) || (ty==PT_PIPE && ver>=43) || (ty==PT_LIFE && ver>=51) || (ty==PT_PBCN && ver>=52) || (ty==PT_WIRE && ver>=55) || (ty==PT_STOR && ver>=59) || (ty==PT_CONV && ver>=60)))
{
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
if (i <= NPART)
particles[i-1].ctype = data[p++];
else
p++;
}
// no more particle properties to load, so we can change type here without messing up loading
if (i && i<=NPART)
{
if (ver<90 && particles[i-1].type == PT_PHOT)
{
particles[i-1].flags |= FLAG_PHOTDECO;
}
if (ver<79 && particles[i-1].type == PT_SPNG)
{
if (fabs(particles[i-1].vx)>0.0f || fabs(particles[i-1].vy)>0.0f)
particles[i-1].flags |= FLAG_MOVABLE;
}
if (ver<48 && (ty==OLD_PT_WIND || (ty==PT_BRAY&&particles[i-1].life==0)))
{
// Replace invisible particles with something sensible and add decoration to hide it
x = (int)(particles[i-1].x+0.5f);
y = (int)(particles[i-1].y+0.5f);
particles[i-1].dcolour = 0xFF000000;
particles[i-1].type = PT_DMND;
}
if(ver<51 && ((ty>=78 && ty<=89) || (ty>=134 && ty<=146 && ty!=141))){
//Replace old GOL
particles[i-1].type = PT_LIFE;
for (gnum = 0; gnum<NGOL; gnum++){
if (ty==builtinGol[gnum].oldtype)
particles[i-1].ctype = gnum;
}
ty = PT_LIFE;
}
if(ver<52 && (ty==PT_CLNE || ty==PT_PCLN || ty==PT_BCLN)){
//Replace old GOL ctypes in clone
for (gnum = 0; gnum<NGOL; gnum++){
if (particles[i-1].ctype==builtinGol[gnum].oldtype)
{
particles[i-1].ctype = PT_LIFE;
particles[i-1].tmp = gnum;
}
}
}
if (particles[i-1].type == PT_LIFE)
{
particles[i-1].tmp2 = particles[i-1].tmp;
particles[i-1].tmp = 0;
if (particles[i-1].ctype >= 0 && particles[i-1].ctype < NGOL)
{
particles[i-1].dcolour = builtinGol[particles[i-1].ctype].colour;
particles[i-1].tmp = builtinGol[particles[i-1].ctype].colour2;
}
}
if(ty==PT_LCRY){
if(ver<67)
{
//New LCRY uses TMP not life
if(particles[i-1].life>=10)
{
particles[i-1].life = 10;
particles[i-1].tmp2 = 10;
particles[i-1].tmp = 3;
}
else if(particles[i-1].life<=0)
{
particles[i-1].life = 0;
particles[i-1].tmp2 = 0;
particles[i-1].tmp = 0;
}
else if(particles[i-1].life < 10 && particles[i-1].life > 0)
{
particles[i-1].tmp = 1;
}
}
else
{
particles[i-1].tmp2 = particles[i-1].life;
}
}
if (ver<81)
{
if (particles[i-1].type==PT_BOMB && particles[i-1].tmp!=0)
{
particles[i-1].type = PT_EMBR;
particles[i-1].ctype = 0;
if (particles[i-1].tmp==1)
particles[i-1].tmp = 0;
}
if (particles[i-1].type==PT_DUST && particles[i-1].life>0)
{
particles[i-1].type = PT_EMBR;
particles[i-1].ctype = (particles[i-1].tmp2<<16) | (particles[i-1].tmp<<8) | particles[i-1].ctype;
particles[i-1].tmp = 1;
}
if (particles[i-1].type==PT_FIRW && particles[i-1].tmp>=2)
{
auto caddress = int(restrict_flt(float(particles[i-1].tmp-4), 0.0f, 199.0f))*3;
particles[i-1].type = PT_EMBR;
particles[i-1].tmp = 1;
particles[i-1].ctype = (((firw_data[caddress]))<<16) | (((firw_data[caddress+1]))<<8) | ((firw_data[caddress+2]));
}
}
if (ver < 89)
{
if (particles[i-1].type == PT_FILT)
{
if (particles[i-1].tmp<0 || particles[i-1].tmp>3)
particles[i-1].tmp = 6;
particles[i-1].ctype = 0;
}
else if (particles[i-1].type == PT_QRTZ || particles[i-1].type == PT_PQRT)
{
particles[i-1].tmp2 = particles[i-1].tmp;
particles[i-1].tmp = particles[i-1].ctype;
particles[i-1].ctype = 0;
}
}
if (ver < 91)
{
if (particles[i-1].type == PT_VINE)
particles[i-1].tmp = 1;
else if (particles[i-1].type == PT_CONV)
{
if (particles[i-1].tmp)
{
particles[i-1].ctype |= particles[i-1].tmp<<8;
particles[i-1].tmp = 0;
}
}
}
if (ver < 93)
{
if (particles[i-1].type == PT_PIPE || particles[i-1].type == PT_PPIP)
{
if (particles[i-1].ctype == 1)
particles[i-1].tmp |= 0x00020000; //PFLAG_INITIALIZING
particles[i-1].tmp |= (particles[i-1].ctype-1)<<18;
particles[i-1].ctype = particles[i-1].tmp&0xFF;
}
else if (particles[i-1].type == PT_HSWC || particles[i-1].type == PT_PUMP)
{
particles[i-1].tmp = 0;
}
}
}
}
if (p >= dataLength)
throw ParseException(ParseException::Corrupt, "Ran past data buffer");
j = data[p++];
for (i=0; i<j; i++)
{
if (p+6 > dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
x = data[p++];
x |= ((unsigned)data[p++])<<8;
tempSign.x = x+x0;
x = data[p++];
x |= ((unsigned)data[p++])<<8;
tempSign.y = x+y0;
x = data[p++];
tempSign.ju = (sign::Justification)x;
x = data[p++];
if (p+x > dataLength)
throw ParseException(ParseException::Corrupt, "Not enough data at line " MTOS(__LINE__) " in " MTOS(__FILE__));
if(x>254)
x = 254;
memcpy(tempSignText, data+p, x);
tempSignText[x] = 0;
tempSign.text = format::CleanString(ByteString(tempSignText).FromUtf8(), true, true, true).Substr(0, 45);
if (tempSign.text == "{t}")
{
tempSign.text = "Temp: {t}";
}
else if (tempSign.text == "{p}")
{
tempSign.text = "Pressure: {p}";
}
tempSigns.push_back(tempSign);
p += x;
}
for (size_t i = 0; i < tempSigns.size(); i++)
{
if(signs.size() == MAXSIGNS)
break;
signs.push_back(tempSigns[i]);
}
}
// restrict the minimum version this save can be opened with
#define RESTRICTVERSION(major, minor) if ((major) > minimumMajorVersion || (((major) == minimumMajorVersion && (minor) > minimumMinorVersion))) {\
minimumMajorVersion = major;\
minimumMinorVersion = minor;\
}
// restrict the minimum version this save can be rendered with
#define RESTRICTRENDERVERSION(major, minor) if ((major) > blameSimon_major || (((major) == blameSimon_major && (minor) > blameSimon_minor))) {\
blameSimon_major = major;\
blameSimon_minor = minor;\
}
char * GameSave::serialiseOPS(unsigned int & dataLength)
{
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
int x, y, i;
// minimum version this save is compatible with
// when building, this number may be increased depending on what elements are used
// or what properties are detected
int minimumMajorVersion = 90, minimumMinorVersion = 2;
// blame simon for always being slow updating the renderer
int blameSimon_major = 92, blameSimon_minor = 0;
//Get coords in blocks
blockX = 0;//orig_x0/CELL;
blockY = 0;//orig_y0/CELL;
//Snap full coords to block size
fullX = blockX*CELL;
fullY = blockY*CELL;
//Original size + offset of original corner from snapped corner, rounded up by adding CELL-1
blockW = blockWidth;//(blockWidth-fullX+CELL-1)/CELL;
blockH = blockHeight;//(blockHeight-fullY+CELL-1)/CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
// Copy fan and wall data
auto wallData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight]);
bool hasWallData = false;
auto fanData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight*2]);
auto pressData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight*2]);
auto vxData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight*2]);
auto vyData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight*2]);
auto ambientData = std::unique_ptr<unsigned char[]>(new unsigned char[blockWidth*blockHeight*2]);
std::fill(&ambientData[0], &ambientData[blockWidth*blockHeight*2], 0);
if (!wallData || !fanData || !pressData || !vxData || !vyData || !ambientData)
throw BuildException("Save error, out of memory (blockmaps)");
unsigned int wallDataLen = blockWidth*blockHeight, fanDataLen = 0, pressDataLen = 0, vxDataLen = 0, vyDataLen = 0, ambientDataLen = 0;
for (x = blockX; x < blockX+blockW; x++)
{
for (y = blockY; y < blockY+blockH; y++)
{
wallData[(y-blockY)*blockW+(x-blockX)] = blockMap[y][x];
if (blockMap[y][x])
hasWallData = true;
if (hasPressure)
{
//save pressure and x/y velocity grids
float pres = std::max(-255.0f,std::min(255.0f,pressure[y][x]))+256.0f;
float velX = std::max(-255.0f,std::min(255.0f,velocityX[y][x]))+256.0f;
float velY = std::max(-255.0f,std::min(255.0f,velocityY[y][x]))+256.0f;
pressData[pressDataLen++] = (unsigned char)((int)(pres*128)&0xFF);
pressData[pressDataLen++] = (unsigned char)((int)(pres*128)>>8);
vxData[vxDataLen++] = (unsigned char)((int)(velX*128)&0xFF);
vxData[vxDataLen++] = (unsigned char)((int)(velX*128)>>8);
vyData[vyDataLen++] = (unsigned char)((int)(velY*128)&0xFF);
vyData[vyDataLen++] = (unsigned char)((int)(velY*128)>>8);
}
if (hasAmbientHeat)
{
int tempTemp = (int)(ambientHeat[y][x]+0.5f);
ambientData[ambientDataLen++] = tempTemp;
ambientData[ambientDataLen++] = tempTemp >> 8;
}
if (blockMap[y][x] == WL_FAN)
{
i = (int)(fanVelX[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
i = (int)(fanVelY[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
}
else if (blockMap[y][x] == WL_STASIS)
{
RESTRICTVERSION(94, 0);
}
}
}
//Index positions of all particles, using linked lists
//partsPosFirstMap is pmap for the first particle in each position
//partsPosLastMap is pmap for the last particle in each position
//partsPosCount is the number of particles in each position
//partsPosLink contains, for each particle, (i<<8)|1 of the next particle in the same position
auto partsPosFirstMap = std::unique_ptr<unsigned[]>(new unsigned[fullW*fullH]);
auto partsPosLastMap = std::unique_ptr<unsigned[]>(new unsigned[fullW*fullH]);
auto partsPosCount = std::unique_ptr<unsigned[]>(new unsigned[fullW*fullH]);
auto partsPosLink = std::unique_ptr<unsigned[]>(new unsigned[NPART]);
if (!partsPosFirstMap || !partsPosLastMap || !partsPosCount || !partsPosLink)
throw BuildException("Save error, out of memory (partmaps)");
std::fill(&partsPosFirstMap[0], &partsPosFirstMap[fullW*fullH], 0);
std::fill(&partsPosLastMap[0], &partsPosLastMap[fullW*fullH], 0);
std::fill(&partsPosCount[0], &partsPosCount[fullW*fullH], 0);
std::fill(&partsPosLink[0], &partsPosLink[NPART], 0);
unsigned int soapCount = 0;
for(i = 0; i < particlesCount; i++)
{
if(particles[i].type)
{
x = (int)(particles[i].x+0.5f);
y = (int)(particles[i].y+0.5f);
//Coordinates relative to top left corner of saved area
x -= fullX;
y -= fullY;
if (!partsPosFirstMap[y*fullW + x])
{
//First entry in list
partsPosFirstMap[y*fullW + x] = (i<<8)|1;
partsPosLastMap[y*fullW + x] = (i<<8)|1;
}
else
{
//Add to end of list
partsPosLink[partsPosLastMap[y*fullW + x]>>8] = (i<<8)|1;//link to current end of list
partsPosLastMap[y*fullW + x] = (i<<8)|1;//set as new end of list
}
partsPosCount[y*fullW + x]++;
}
}
//Store number of particles in each position
auto partsPosData = std::unique_ptr<unsigned char[]>(new unsigned char[fullW*fullH*3]);
unsigned int partsPosDataLen = 0;
if (!partsPosData)
throw BuildException("Save error, out of memory (partposdata)");
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
unsigned int posCount = partsPosCount[y*fullW + x];
partsPosData[partsPosDataLen++] = (posCount&0x00FF0000)>>16;
partsPosData[partsPosDataLen++] = (posCount&0x0000FF00)>>8;
partsPosData[partsPosDataLen++] = (posCount&0x000000FF);
}
}
//Copy parts data
/* Field descriptor format:
| 0 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| RESERVED | type[2] | pavg | tmp[3+4] | tmp2[2] | tmp2 | ctype[2] | vy | vx | decorations | ctype[1] | tmp[2] | tmp[1] | life[2] | life[1] | temp dbl len |
life[2] means a second byte (for a 16 bit field) if life[1] is present
last bit is reserved. If necessary, use it to signify that fieldDescriptor will have another byte
That way, if we ever need a 17th bit, we won't have to change the save format
*/
auto partsData = std::unique_ptr<unsigned char[]>(new unsigned char[NPART * (sizeof(Particle)+1)]);
unsigned int partsDataLen = 0;
auto partsSaveIndex = std::unique_ptr<unsigned[]>(new unsigned[NPART]);
unsigned int partsCount = 0;
if (!partsData || !partsSaveIndex)
throw BuildException("Save error, out of memory (partsdata)");
std::fill(&partsSaveIndex[0], &partsSaveIndex[NPART], 0);
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
//Find the first particle in this position
i = partsPosFirstMap[y*fullW + x];
//Loop while there is a pmap entry
while (i)
{
unsigned short fieldDesc = 0;
int fieldDescLoc = 0, tempTemp, vTemp;
//Turn pmap entry into a particles index
i = i>>8;
//Store saved particle index+1 for this partsptr index (0 means not saved)
partsSaveIndex[i] = (partsCount++) + 1;
//Type (required)
partsData[partsDataLen++] = particles[i].type;
//Location of the field descriptor
fieldDescLoc = partsDataLen++;
partsDataLen++;
// Extra type byte if necessary
if (particles[i].type & 0xFF00)
{
partsData[partsDataLen++] = particles[i].type >> 8;
fieldDesc |= 1 << 14;
RESTRICTVERSION(93, 0);
RESTRICTRENDERVERSION(93, 0);
}
//Extra Temperature (2nd byte optional, 1st required), 1 to 2 bytes
//Store temperature as an offset of 21C(294.15K) or go into a 16byte int and store the whole thing
if(fabs(particles[i].temp-294.15f)<127)
{
tempTemp = int(floor(particles[i].temp-294.15f+0.5f));
partsData[partsDataLen++] = tempTemp;
}
else
{
fieldDesc |= 1;
tempTemp = (int)(particles[i].temp+0.5f);
partsData[partsDataLen++] = tempTemp;
partsData[partsDataLen++] = tempTemp >> 8;
}
//Life (optional), 1 to 2 bytes
if(particles[i].life)
{
int life = particles[i].life;
if (life > 0xFFFF)
life = 0xFFFF;
else if (life < 0)
life = 0;
fieldDesc |= 1 << 1;
partsData[partsDataLen++] = life;
if (life & 0xFF00)
{
fieldDesc |= 1 << 2;
partsData[partsDataLen++] = life >> 8;
}
}
//Tmp (optional), 1, 2, or 4 bytes
if(particles[i].tmp)
{
fieldDesc |= 1 << 3;
partsData[partsDataLen++] = particles[i].tmp;
if(particles[i].tmp & 0xFFFFFF00)
{
fieldDesc |= 1 << 4;
partsData[partsDataLen++] = particles[i].tmp >> 8;
if(particles[i].tmp & 0xFFFF0000)
{
fieldDesc |= 1 << 12;
partsData[partsDataLen++] = (particles[i].tmp&0xFF000000)>>24;
partsData[partsDataLen++] = (particles[i].tmp&0x00FF0000)>>16;
}
}
}
//Ctype (optional), 1 or 4 bytes
if(particles[i].ctype)
{
fieldDesc |= 1 << 5;
partsData[partsDataLen++] = particles[i].ctype;
if(particles[i].ctype & 0xFFFFFF00)
{
fieldDesc |= 1 << 9;
partsData[partsDataLen++] = (particles[i].ctype&0xFF000000)>>24;
partsData[partsDataLen++] = (particles[i].ctype&0x00FF0000)>>16;
partsData[partsDataLen++] = (particles[i].ctype&0x0000FF00)>>8;
}
}
//Dcolour (optional), 4 bytes
if(particles[i].dcolour && (particles[i].dcolour & 0xFF000000 || particles[i].type == PT_LIFE))
{
fieldDesc |= 1 << 6;
partsData[partsDataLen++] = (particles[i].dcolour&0xFF000000)>>24;
partsData[partsDataLen++] = (particles[i].dcolour&0x00FF0000)>>16;
partsData[partsDataLen++] = (particles[i].dcolour&0x0000FF00)>>8;
partsData[partsDataLen++] = (particles[i].dcolour&0x000000FF);
}
//VX (optional), 1 byte
if(fabs(particles[i].vx) > 0.001f)
{
fieldDesc |= 1 << 7;
vTemp = (int)(particles[i].vx*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//VY (optional), 1 byte
if(fabs(particles[i].vy) > 0.001f)
{
fieldDesc |= 1 << 8;
vTemp = (int)(particles[i].vy*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//Tmp2 (optional), 1 or 2 bytes
if(particles[i].tmp2)
{
fieldDesc |= 1 << 10;
partsData[partsDataLen++] = particles[i].tmp2;
if(particles[i].tmp2 & 0xFF00)
{
fieldDesc |= 1 << 11;
partsData[partsDataLen++] = particles[i].tmp2 >> 8;
}
}
//Pavg, 4 bytes
// save pavg if there's useful pavg to save
// and either we save pressure data too
// or the current particle is not one that cares about pressure
if (particles[i].pavg[0] || particles[i].pavg[1])
{
float pavg0 = particles[i].pavg[0];
float pavg1 = particles[i].pavg[1];
switch (particles[i].type)
{
// List of elements that save pavg with a multiplicative bias of 2**6
// (or not at all if pressure is not saved).
// If you change this list, change it in Simulation::Load and GameSave::readOPS too!
case PT_QRTZ:
case PT_GLAS:
case PT_TUNG:
if (!hasPressure)
break;
pavg0 *= 64;
pavg1 *= 64;
// fallthrough!
default:
fieldDesc |= 1 << 13;
partsData[partsDataLen++] = (int)pavg0;
partsData[partsDataLen++] = ((int)pavg0)>>8;
partsData[partsDataLen++] = (int)pavg1;
partsData[partsDataLen++] = ((int)pavg1)>>8;
break;
}
}
//Write the field descriptor
partsData[fieldDescLoc] = fieldDesc;
partsData[fieldDescLoc+1] = fieldDesc>>8;
if (particles[i].type == PT_SOAP)
soapCount++;
if (particles[i].type == PT_RPEL && particles[i].ctype)
{
RESTRICTVERSION(91, 4);
}
else if (particles[i].type == PT_NWHL && particles[i].tmp)
{
RESTRICTVERSION(91, 5);
}
if (particles[i].type == PT_HEAC || particles[i].type == PT_SAWD || particles[i].type == PT_POLO
|| particles[i].type == PT_RFRG || particles[i].type == PT_RFGL || particles[i].type == PT_LSNS)
{
RESTRICTVERSION(92, 0);
}
else if ((particles[i].type == PT_FRAY || particles[i].type == PT_INVIS) && particles[i].tmp)
{
RESTRICTVERSION(92, 0);
}
else if (particles[i].type == PT_PIPE || particles[i].type == PT_PPIP)
{
RESTRICTVERSION(93, 0);
}
if (particles[i].type == PT_TSNS || particles[i].type == PT_PSNS
|| particles[i].type == PT_HSWC || particles[i].type == PT_PUMP)
{
if (particles[i].tmp == 1)
{
RESTRICTVERSION(93, 0);
}
}
if (PMAPBITS > 8)
{
if (TypeInCtype(particles[i].type, particles[i].ctype) && particles[i].ctype > 0xFF)
{
RESTRICTVERSION(93, 0);
}
else if (TypeInTmp(particles[i].type) && particles[i].tmp > 0xFF)
{
RESTRICTVERSION(93, 0);
}
else if (TypeInTmp2(particles[i].type, particles[i].tmp2) && particles[i].tmp2 > 0xFF)
{
RESTRICTVERSION(93, 0);
}
}
if (particles[i].type == PT_LDTC)
{
RESTRICTVERSION(94, 0);
}
if (particles[i].type == PT_TSNS || particles[i].type == PT_PSNS)
{
if (particles[i].tmp == 2)
{
RESTRICTVERSION(94, 0);
}
}
if (particles[i].type == PT_LSNS)
{
if (particles[i].tmp >= 1 || particles[i].tmp <= 3)
{
RESTRICTVERSION(95, 0);
}
}
if (particles[i].type == PT_LIFE)
{
RESTRICTVERSION(96, 0);
}
//Get the pmap entry for the next particle in the same position
i = partsPosLink[i];
}
}
}
unsigned char *soapLinkData = NULL;
auto soapLinkDataPtr = std::unique_ptr<unsigned char[]>();
unsigned int soapLinkDataLen = 0;
if (soapCount)
{
soapLinkData = new unsigned char[3*soapCount];
if (!soapLinkData)
throw BuildException("Save error, out of memory (SOAP)");
soapLinkDataPtr = std::unique_ptr<unsigned char[]>(soapLinkData);
//Iterate through particles in the same order that they were saved
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
//Find the first particle in this position
i = partsPosFirstMap[y*fullW + x];
//Loop while there is a pmap entry
while (i)
{
//Turn pmap entry into a partsptr index
i = i>>8;
if (particles[i].type==PT_SOAP)
{
//Only save forward link for each particle, back links can be deduced from other forward links
//linkedIndex is index within saved particles + 1, 0 means not saved or no link
unsigned linkedIndex = 0;
if ((particles[i].ctype&2) && particles[i].tmp>=0 && particles[i].tmp<NPART)
{
linkedIndex = partsSaveIndex[particles[i].tmp];
}
soapLinkData[soapLinkDataLen++] = (linkedIndex&0xFF0000)>>16;
soapLinkData[soapLinkDataLen++] = (linkedIndex&0x00FF00)>>8;
soapLinkData[soapLinkDataLen++] = (linkedIndex&0x0000FF);
}
//Get the pmap entry for the next particle in the same position
i = partsPosLink[i];
}
}
}
}
for (size_t i = 0; i < signs.size(); i++)
{
if(signs[i].text.length() && signs[i].x>=0 && signs[i].x<=fullW && signs[i].y>=0 && signs[i].y<=fullH)
{
int x, y, w, h;
bool v95 = false;
signs[i].getDisplayText(nullptr, x, y, w, h, true, &v95);
if (v95)
{
RESTRICTVERSION(95, 0);
}
}
}
#if defined(SNAPSHOT) || defined(BETA) || defined(DEBUG) || MOD_ID > 0
// Mark save as incompatible with latest release
if (minimumMajorVersion > SAVE_VERSION || (minimumMajorVersion == SAVE_VERSION && minimumMinorVersion > MINOR_VERSION))
fromNewerVersion = true;
#endif
bson b;
b.data = NULL;
auto bson_deleter = [](bson * b) { bson_destroy(b); };
// Use unique_ptr with a custom deleter to ensure that bson_destroy is called even when an exception is thrown
std::unique_ptr<bson, decltype(bson_deleter)> b_ptr(&b, bson_deleter);
set_bson_err_handler([](const char* err) { throw BuildException("BSON error when parsing save: " + ByteString(err).FromUtf8()); });
bson_init(&b);
bson_append_start_object(&b, "origin");
bson_append_int(&b, "majorVersion", SAVE_VERSION);
bson_append_int(&b, "minorVersion", MINOR_VERSION);
bson_append_int(&b, "buildNum", BUILD_NUM);
bson_append_int(&b, "snapshotId", SNAPSHOT_ID);
bson_append_int(&b, "modId", MOD_ID);
bson_append_string(&b, "releaseType", IDENT_RELTYPE);
bson_append_string(&b, "platform", IDENT_PLATFORM);
bson_append_string(&b, "builtType", IDENT_BUILD);
bson_append_finish_object(&b);
bson_append_start_object(&b, "minimumVersion");
bson_append_int(&b, "major", minimumMajorVersion);
bson_append_int(&b, "minor", minimumMinorVersion);
bson_append_int(&b, "rendermajor", blameSimon_major);
bson_append_int(&b, "renderminor", blameSimon_minor);
bson_append_finish_object(&b);
bson_append_bool(&b, "waterEEnabled", waterEEnabled);
bson_append_bool(&b, "legacyEnable", legacyEnable);
bson_append_bool(&b, "gravityEnable", gravityEnable);
bson_append_bool(&b, "aheat_enable", aheatEnable);
bson_append_bool(&b, "paused", paused);
bson_append_int(&b, "gravityMode", gravityMode);
bson_append_int(&b, "airMode", airMode);
bson_append_int(&b, "edgeMode", edgeMode);
if (stkm.hasData())
{
bson_append_start_object(&b, "stkm");
if (stkm.rocketBoots1)
bson_append_bool(&b, "rocketBoots1", stkm.rocketBoots1);
if (stkm.rocketBoots2)
bson_append_bool(&b, "rocketBoots2", stkm.rocketBoots2);
if (stkm.fan1)
bson_append_bool(&b, "fan1", stkm.fan1);
if (stkm.fan2)
bson_append_bool(&b, "fan2", stkm.fan2);
if (stkm.rocketBootsFigh.size())
{
bson_append_start_array(&b, "rocketBootsFigh");
for (unsigned int fighNum : stkm.rocketBootsFigh)
bson_append_int(&b, "num", fighNum);
bson_append_finish_array(&b);
}
if (stkm.fanFigh.size())
{
bson_append_start_array(&b, "fanFigh");
for (unsigned int fighNum : stkm.fanFigh)
bson_append_int(&b, "num", fighNum);
bson_append_finish_array(&b);
}
bson_append_finish_object(&b);
}
bson_append_int(&b, "pmapbits", pmapbits);
if (partsData && partsDataLen)
{
bson_append_binary(&b, "parts", (char)BSON_BIN_USER, (const char *)partsData.get(), partsDataLen);
if (palette.size())
{
bson_append_start_array(&b, "palette");
for(std::vector<PaletteItem>::iterator iter = palette.begin(), end = palette.end(); iter != end; ++iter)
{
bson_append_int(&b, (*iter).first.c_str(), (*iter).second);
}
bson_append_finish_array(&b);
}
if (partsPosData && partsPosDataLen)
bson_append_binary(&b, "partsPos", (char)BSON_BIN_USER, (const char *)partsPosData.get(), partsPosDataLen);
}
if (wallData && hasWallData)
bson_append_binary(&b, "wallMap", (char)BSON_BIN_USER, (const char *)wallData.get(), wallDataLen);
if (fanData && fanDataLen)
bson_append_binary(&b, "fanMap", (char)BSON_BIN_USER, (const char *)fanData.get(), fanDataLen);
if (pressData && hasPressure && pressDataLen)
bson_append_binary(&b, "pressMap", (char)BSON_BIN_USER, (const char*)pressData.get(), pressDataLen);
if (vxData && hasPressure && vxDataLen)
bson_append_binary(&b, "vxMap", (char)BSON_BIN_USER, (const char*)vxData.get(), vxDataLen);
if (vyData && hasPressure && vyDataLen)
bson_append_binary(&b, "vyMap", (char)BSON_BIN_USER, (const char*)vyData.get(), vyDataLen);
if (ambientData && hasAmbientHeat && this->aheatEnable && ambientDataLen)
bson_append_binary(&b, "ambientMap", (char)BSON_BIN_USER, (const char*)ambientData.get(), ambientDataLen);
if (soapLinkData && soapLinkDataLen)
bson_append_binary(&b, "soapLinks", (char)BSON_BIN_USER, (const char *)soapLinkData, soapLinkDataLen);
unsigned int signsCount = 0;
for (size_t i = 0; i < signs.size(); i++)
{
if(signs[i].text.length() && signs[i].x>=0 && signs[i].x<=fullW && signs[i].y>=0 && signs[i].y<=fullH)
{
signsCount++;
}
}
if (signsCount)
{
bson_append_start_array(&b, "signs");
for (size_t i = 0; i < signs.size(); i++)
{
if(signs[i].text.length() && signs[i].x>=0 && signs[i].x<=fullW && signs[i].y>=0 && signs[i].y<=fullH)
{
bson_append_start_object(&b, "sign");
bson_append_string(&b, "text", signs[i].text.ToUtf8().c_str());
bson_append_int(&b, "justification", signs[i].ju);
bson_append_int(&b, "x", signs[i].x);
bson_append_int(&b, "y", signs[i].y);
bson_append_finish_object(&b);
}
}
bson_append_finish_array(&b);
}
if (authors.size())
{
bson_append_start_object(&b, "authors");
ConvertJsonToBson(&b, authors);
bson_append_finish_object(&b);
}
if (bson_finish(&b) == BSON_ERROR)
throw BuildException("Error building bson data");
unsigned char *finalData = (unsigned char*)bson_data(&b);
unsigned int finalDataLen = bson_size(&b);
auto outputData = std::unique_ptr<unsigned char[]>(new unsigned char[finalDataLen*2+12]);
if (!outputData)
throw BuildException(String::Build("Save error, out of memory (finalData): ", finalDataLen*2+12));
outputData[0] = 'O';
outputData[1] = 'P';
outputData[2] = 'S';
outputData[3] = '1';
outputData[4] = SAVE_VERSION;
outputData[5] = CELL;
outputData[6] = blockW;
outputData[7] = blockH;
outputData[8] = finalDataLen;
outputData[9] = finalDataLen >> 8;
outputData[10] = finalDataLen >> 16;
outputData[11] = finalDataLen >> 24;
unsigned int compressedSize = finalDataLen*2, bz2ret;
if ((bz2ret = BZ2_bzBuffToBuffCompress((char*)(outputData.get()+12), &compressedSize, (char*)finalData, bson_size(&b), 9, 0, 0)) != BZ_OK)
{
throw BuildException(String::Build("Save error, could not compress (ret ", bz2ret, ")"));
}
#ifdef DEBUG
printf("compressed data: %d\n", compressedSize);
#endif
dataLength = compressedSize + 12;
char *saveData = new char[dataLength];
std::copy(&outputData[0], &outputData[dataLength], &saveData[0]);
return saveData;
}
void GameSave::ConvertBsonToJson(bson_iterator *iter, Json::Value *j, int depth)
{
bson_iterator subiter;
bson_iterator_subiterator(iter, &subiter);
while (bson_iterator_next(&subiter))
{
ByteString key = bson_iterator_key(&subiter);
if (bson_iterator_type(&subiter) == BSON_STRING)
(*j)[key] = bson_iterator_string(&subiter);
else if (bson_iterator_type(&subiter) == BSON_BOOL)
(*j)[key] = bson_iterator_bool(&subiter);
else if (bson_iterator_type(&subiter) == BSON_INT)
(*j)[key] = bson_iterator_int(&subiter);
else if (bson_iterator_type(&subiter) == BSON_LONG)
(*j)[key] = (Json::Value::UInt64)bson_iterator_long(&subiter);
else if (bson_iterator_type(&subiter) == BSON_ARRAY && depth < 5)
{
bson_iterator arrayiter;
bson_iterator_subiterator(&subiter, &arrayiter);
int length = 0, length2 = 0;
while (bson_iterator_next(&arrayiter))
{
if (bson_iterator_type(&arrayiter) == BSON_OBJECT && !strcmp(bson_iterator_key(&arrayiter), "part"))
{
Json::Value tempPart;
ConvertBsonToJson(&arrayiter, &tempPart, depth + 1);
(*j)["links"].append(tempPart);
length++;
}
else if (bson_iterator_type(&arrayiter) == BSON_INT && !strcmp(bson_iterator_key(&arrayiter), "saveID"))
{
(*j)["links"].append(bson_iterator_int(&arrayiter));
}
length2++;
if (length > (int)(40 / ((depth+1) * (depth+1))) || length2 > 50)
break;
}
}
}
}
std::set<int> GetNestedSaveIDs(Json::Value j)
{
Json::Value::Members members = j.getMemberNames();
std::set<int> saveIDs = std::set<int>();
for (Json::Value::Members::iterator iter = members.begin(), end = members.end(); iter != end; ++iter)
{
ByteString member = *iter;
if (member == "id" && j[member].isInt())
saveIDs.insert(j[member].asInt());
else if (j[member].isArray())
{
for (Json::Value::ArrayIndex i = 0; i < j[member].size(); i++)
{
// only supports objects and ints here because that is all we need
if (j[member][i].isInt())
{
saveIDs.insert(j[member][i].asInt());
continue;
}
if (!j[member][i].isObject())
continue;
std::set<int> nestedSaveIDs = GetNestedSaveIDs(j[member][i]);
saveIDs.insert(nestedSaveIDs.begin(), nestedSaveIDs.end());
}
}
}
return saveIDs;
}
// converts a json object to bson
void GameSave::ConvertJsonToBson(bson *b, Json::Value j, int depth)
{
Json::Value::Members members = j.getMemberNames();
for (Json::Value::Members::iterator iter = members.begin(), end = members.end(); iter != end; ++iter)
{
ByteString member = *iter;
if (j[member].isString())
bson_append_string(b, member.c_str(), j[member].asCString());
else if (j[member].isBool())
bson_append_bool(b, member.c_str(), j[member].asBool());
else if (j[member].type() == Json::intValue)
bson_append_int(b, member.c_str(), j[member].asInt());
else if (j[member].type() == Json::uintValue)
bson_append_long(b, member.c_str(), j[member].asInt64());
else if (j[member].isArray())
{
bson_append_start_array(b, member.c_str());
std::set<int> saveIDs = std::set<int>();
int length = 0;
for (Json::Value::ArrayIndex i = 0; i < j[member].size(); i++)
{
// only supports objects and ints here because that is all we need
if (j[member][i].isInt())
{
saveIDs.insert(j[member][i].asInt());
continue;
}
if (!j[member][i].isObject())
continue;
if (depth > 4 || length > (int)(40 / ((depth+1) * (depth+1))))
{
std::set<int> nestedSaveIDs = GetNestedSaveIDs(j[member][i]);
saveIDs.insert(nestedSaveIDs.begin(), nestedSaveIDs.end());
}
else
{
bson_append_start_object(b, "part");
ConvertJsonToBson(b, j[member][i], depth+1);
bson_append_finish_object(b);
}
length++;
}
for (std::set<int>::iterator iter = saveIDs.begin(), end = saveIDs.end(); iter != end; ++iter)
{
bson_append_int(b, "saveID", *iter);
}
bson_append_finish_array(b);
}
}
}
// deallocates a pointer to a 2D array and sets it to NULL
template <typename T>
void GameSave::Deallocate2DArray(T ***array, int blockHeight)
{
if (*array)
{
for (int y = 0; y < blockHeight; y++)
delete[] (*array)[y];
delete[] (*array);
*array = NULL;
}
}
bool GameSave::TypeInCtype(int type, int ctype)
{
return ctype >= 0 && ctype < PT_NUM &&
(type == PT_CLNE || type == PT_PCLN || type == PT_BCLN || type == PT_PBCN ||
type == PT_STOR || type == PT_CONV || type == PT_STKM || type == PT_STKM2 ||
type == PT_FIGH || type == PT_LAVA || type == PT_SPRK || type == PT_PSTN ||
type == PT_CRAY || type == PT_DTEC || type == PT_DRAY || type == PT_PIPE ||
type == PT_PPIP || type == PT_LDTC);
}
bool GameSave::TypeInTmp(int type)
{
return type == PT_STOR;
}
bool GameSave::TypeInTmp2(int type, int tmp2)
{
return (type == PT_VIRS || type == PT_VRSG || type == PT_VRSS) && (tmp2 >= 0 && tmp2 < PT_NUM);
}
void GameSave::dealloc()
{
if (particles)
{
delete[] particles;
particles = NULL;
}
Deallocate2DArray<unsigned char>(&blockMap, blockHeight);
Deallocate2DArray<float>(&fanVelX, blockHeight);
Deallocate2DArray<float>(&fanVelY, blockHeight);
Deallocate2DArray<float>(&pressure, blockHeight);
Deallocate2DArray<float>(&velocityX, blockHeight);
Deallocate2DArray<float>(&velocityY, blockHeight);
Deallocate2DArray<float>(&ambientHeat, blockHeight);
}
GameSave::~GameSave()
{
dealloc();
}
GameSave& GameSave::operator << (Particle &v)
{
if(particlesCount<NPART && v.type)
{
particles[particlesCount++] = v;
}
return *this;
}
GameSave& GameSave::operator << (sign &v)
{
if(signs.size()<MAXSIGNS && v.text.length())
signs.push_back(v);
return *this;
}