Mostly. They are now const but only in graphics functions called from secondary Renderers. The primary (main thread) Renderer still allows graphics functions to mutate Simulation; this is required for correct in-PIPE rendering of custom elements.
By factoring element and other static-ish data out of Simulation and protecting basic graphical element properties (i.e. everything that contributes to graphics other than the Graphics callback) with an std::shared_mutex. This is taken exclusively (std::unique_lock) by the main thread when it changes these properties, and inclusively (std::shared_lock) by non-main-thread code that uses Renderer.
Achieved by adding a new element property called CarriesTypeIn, whose bits signal to save loading code which properties of particles of the element class in question carry element IDs. The bits in this property are numbered the same way as sim.FIELD_* constants for consistency. One would signal from Lua that a custom element carries element IDs in its tmp like this:
elem.property(id, "CarriesTypeIn", 2 ^ sim.FIELD_TMP)
"Carrying an element ID in a property" is to be interpreted as follows: the property is treated as a combination of a PMAPBITS-bit (so, currently 9-bit) unsigned integer lower part holding an element ID and a 32-PMAPBITS-bit (so, currently 23-bit) signed integer upper part holding whatever makes sense for the element. CONV, for example, uses this signed integer in its ctype as the extra "v" parameter for particle creation.
The rest will will in a commit soon that adds the Create event and some other stuff
Lua events will come after that
PLSM default temp lowered to MAX_TEMP