The-Powder-Toy/src/save.c

2338 lines
60 KiB
C
Raw Normal View History

#include <bzlib.h>
#include <math.h>
#include "defines.h"
#include "powder.h"
#include "save.h"
#include "gravity.h"
#include "BSON.h"
//Pop
pixel *prerender_save(void *save, int size, int *width, int *height)
{
unsigned char * saveData = save;
if (size<16)
{
return NULL;
}
if(saveData[0] == 'O' && saveData[1] == 'P' && saveData[2] == 'S')
{
return prerender_save_OPS(save, size, width, height);
}
else if((saveData[0]==0x66 && saveData[1]==0x75 && saveData[2]==0x43) || (saveData[0]==0x50 && saveData[1]==0x53 && saveData[2]==0x76))
{
return prerender_save_PSv(save, size, width, height);
}
return NULL;
}
void *build_save(int *size, int orig_x0, int orig_y0, int orig_w, int orig_h, unsigned char bmap[YRES/CELL][XRES/CELL], float vx[YRES/CELL][XRES/CELL], float vy[YRES/CELL][XRES/CELL], float pv[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* partsptr)
{
#ifdef SAVE_OPS
return build_save_OPS(size, orig_x0, orig_y0, orig_w, orig_h, bmap, vx, vy, pv, fvx, fvy, signs, partsptr);
#else
return build_save_PSv(size, orig_x0, orig_y0, orig_w, orig_h, bmap, fvx, fvy, signs, partsptr);
#endif
}
int parse_save(void *save, int size, int replace, int x0, int y0, unsigned char bmap[YRES/CELL][XRES/CELL], float vx[YRES/CELL][XRES/CELL], float vy[YRES/CELL][XRES/CELL], float pv[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* partsptr, unsigned pmap[YRES][XRES])
{
unsigned char * saveData = save;
if (size<16)
{
return 1;
}
if(saveData[0] == 'O' && saveData[1] == 'P' && saveData[2] == 'S')
{
return parse_save_OPS(save, size, replace, x0, y0, bmap, vx, vy, pv, fvx, fvy, signs, partsptr, pmap);
}
else if((saveData[0]==0x66 && saveData[1]==0x75 && saveData[2]==0x43) || (saveData[0]==0x50 && saveData[1]==0x53 && saveData[2]==0x76))
{
return parse_save_PSv(save, size, replace, x0, y0, bmap, fvx, fvy, signs, partsptr, pmap);
}
return 1;
}
pixel *prerender_save_OPS(void *save, int size, int *width, int *height)
{
2012-01-01 08:35:37 -06:00
unsigned char * inputData = save, *bsonData = NULL, *partsData = NULL, *partsPosData = NULL, *wallData = NULL;
int inputDataLen = size, bsonDataLen = 0, partsDataLen, partsPosDataLen, wallDataLen;
int i, x, y, j;
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
int bsonInitialised = 0;
2012-01-01 08:35:37 -06:00
pixel * vidBuf = NULL;
bson b;
bson_iterator iter;
//Block sizes
2012-01-01 08:35:37 -06:00
blockX = 0;
blockY = 0;
blockW = inputData[6];
blockH = inputData[7];
//Full size, normalised
2012-01-01 08:35:37 -06:00
fullX = 0;
fullY = 0;
fullW = blockW*CELL;
fullH = blockH*CELL;
2012-01-01 08:35:37 -06:00
//
*width = fullW;
*height = fullH;
//From newer version
if(inputData[4] > SAVE_VERSION)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Save from newer version\n");
goto fail;
}
//Incompatible cell size
if(inputData[5] > CELL)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Cell size mismatch\n");
goto fail;
}
//Too large/off screen
2012-01-01 08:35:37 -06:00
if(blockX+blockW > XRES/CELL || blockY+blockH > YRES/CELL)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Save too large\n");
goto fail;
}
bsonDataLen = ((unsigned)inputData[8]);
bsonDataLen |= ((unsigned)inputData[9]) << 8;
bsonDataLen |= ((unsigned)inputData[10]) << 16;
bsonDataLen |= ((unsigned)inputData[11]) << 24;
bsonData = malloc(bsonDataLen+1);
if(!bsonData)
{
fprintf(stderr, "Internal error while parsing save: could not allocate buffer\n");
goto fail;
}
//Make sure bsonData is null terminated, since all string functions need null terminated strings
//(bson_iterator_key returns a pointer into bsonData, which is then used with strcmp)
bsonData[bsonDataLen] = 0;
if (BZ2_bzBuffToBuffDecompress(bsonData, &bsonDataLen, inputData+12, inputDataLen-12, 0, 0))
{
fprintf(stderr, "Unable to decompress\n");
goto fail;
}
2012-01-01 08:35:37 -06:00
bson_init_data(&b, bsonData);
bsonInitialised = 1;
2012-01-01 08:35:37 -06:00
bson_iterator_init(&iter, &b);
while(bson_iterator_next(&iter))
{
if(strcmp(bson_iterator_key(&iter), "parts")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
if(strcmp(bson_iterator_key(&iter), "partsPos")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsPosDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsPosData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle position data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "wallMap")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (wallDataLen = bson_iterator_bin_len(&iter)) > 0)
{
wallData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of wall data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
}
vidBuf = calloc(fullW*fullH, PIXELSIZE);
//Read wall and fan data
if(wallData)
{
if(blockW * blockH > wallDataLen)
{
fprintf(stderr, "Not enough wall data\n");
goto fail;
}
for(x = 0; x < blockW; x++)
{
for(y = 0; y < blockH; y++)
{
if(wallData[y*blockW+x])
{
for(i = 0; i < CELL; i++)
{
for(j = 0; j < CELL; j++)
{
vidBuf[(fullY+i+(y*CELL))*fullW+(fullX+j+(x*CELL))] = PIXPACK(0xCCCCCC);
}
}
};
}
}
}
2012-01-01 08:35:37 -06:00
//Read particle data
if(partsData && partsPosData)
{
int fieldDescriptor;
int posCount, posTotal, partsPosDataIndex = 0;
int saved_x, saved_y;
if(fullW * fullH * 3 > partsPosDataLen)
{
fprintf(stderr, "Not enough particle position data\n");
goto fail;
}
i = 0;
for (saved_y=0; saved_y<fullH; saved_y++)
{
for (saved_x=0; saved_x<fullW; saved_x++)
{
//Read total number of particles at this position
posTotal = 0;
posTotal |= partsPosData[partsPosDataIndex++]<<16;
posTotal |= partsPosData[partsPosDataIndex++]<<8;
posTotal |= partsPosData[partsPosDataIndex++];
//Put the next posTotal particles at this position
for (posCount=0; posCount<posTotal; posCount++)
{
//i+3 because we have 4 bytes of required fields (type (1), descriptor (2), temp (1))
if (i+3 >= partsDataLen)
goto fail;
x = saved_x + fullX;
y = saved_y + fullY;
fieldDescriptor = partsData[i+1];
fieldDescriptor |= partsData[i+2] << 8;
if(x >= XRES || x < 0 || y >= YRES || y < 0)
{
fprintf(stderr, "Out of range [%d]: %d %d, [%d, %d], [%d, %d]\n", i, x, y, (unsigned)partsData[i+1], (unsigned)partsData[i+2], (unsigned)partsData[i+3], (unsigned)partsData[i+4]);
goto fail;
}
if(partsData[i] >= PT_NUM)
partsData[i] = PT_DMND; //Replace all invalid elements with diamond
2012-01-01 08:35:37 -06:00
//Draw type
vidBuf[(fullY+y)*fullW+(fullX+x)] = ptypes[partsData[i]].pcolors;
i+=3; //Skip Type an Descriptor
//Skip temp
if(fieldDescriptor & 0x01)
{
i+=2;
}
else
{
i++;
}
//Skip life
if(fieldDescriptor & 0x02)
{
if(i++ >= partsDataLen) goto fail;
if(fieldDescriptor & 0x04)
{
if(i++ >= partsDataLen) goto fail;
}
}
//Skip tmp
if(fieldDescriptor & 0x08)
{
if(i++ >= partsDataLen) goto fail;
if(fieldDescriptor & 0x10)
{
if(i++ >= partsDataLen) goto fail;
}
}
//Skip ctype
if(fieldDescriptor & 0x20)
{
if(i++ >= partsDataLen) goto fail;
if(fieldDescriptor & 0x200)
{
if(i+2 >= partsDataLen) goto fail;
i+=3;
}
2012-01-01 08:35:37 -06:00
}
//Read dcolour
2012-01-01 08:35:37 -06:00
if(fieldDescriptor & 0x40)
{
if(i+3 >= partsDataLen) goto fail;
i++; //vidBuf[(fullY+y)*fullW+(fullX+x)] = (unsigned)partsData[i++]<<24;
vidBuf[(fullY+y)*fullW+(fullX+x)] = (unsigned)partsData[i++]<<16;
vidBuf[(fullY+y)*fullW+(fullX+x)] |= (unsigned)partsData[i++]<<8;
vidBuf[(fullY+y)*fullW+(fullX+x)] |= (unsigned)partsData[i++];
2012-01-01 08:35:37 -06:00
}
//Skip vx
2012-01-01 08:35:37 -06:00
if(fieldDescriptor & 0x80)
{
if(i++ >= partsDataLen) goto fail;
}
//Skip vy
2012-01-01 08:35:37 -06:00
if(fieldDescriptor & 0x100)
{
if(i++ >= partsDataLen) goto fail;
}
//Skip tmp2
if(fieldDescriptor & 0x400)
{
if(i++ >= partsDataLen) goto fail;
}
2012-01-01 08:35:37 -06:00
}
}
}
}
goto fin;
fail:
if(vidBuf)
{
free(vidBuf);
vidBuf = NULL;
}
fin:
//Don't call bson_destroy if bson_init wasn't called, or an uninitialised pointer (b.data) will be freed and the game will crash
if (bsonInitialised)
bson_destroy(&b);
2012-01-01 08:35:37 -06:00
return vidBuf;
}
void *build_save_OPS(int *size, int orig_x0, int orig_y0, int orig_w, int orig_h, unsigned char bmap[YRES/CELL][XRES/CELL], float vx[YRES/CELL][XRES/CELL], float vy[YRES/CELL][XRES/CELL], float pv[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* o_partsptr)
{
particle *partsptr = o_partsptr;
unsigned char *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL, *finalData = NULL, *outputData = NULL;
unsigned *partsPosLink = NULL, *partsPosFirstMap = NULL, *partsPosCount = NULL, *partsPosLastMap = NULL;
int partsDataLen, partsPosDataLen, fanDataLen, wallDataLen, finalDataLen, outputDataLen;
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
int x, y, i, wallDataFound = 0;
int posCount, signsCount;
bson b;
//Get coords in blocks
blockX = orig_x0/CELL;
blockY = orig_y0/CELL;
//Snap full coords to block size
fullX = blockX*CELL;
fullY = blockY*CELL;
//Original size + offset of original corner from snapped corner, rounded up by adding CELL-1
blockW = (orig_w+orig_x0-fullX+CELL-1)/CELL;
blockH = (orig_h+orig_y0-fullY+CELL-1)/CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
//Copy fan and wall data
wallData = malloc(blockW*blockH);
wallDataLen = blockW*blockH;
fanData = malloc((blockW*blockH)*2);
fanDataLen = 0;
for(x = blockX; x < blockX+blockW; x++)
{
for(y = blockY; y < blockY+blockH; y++)
{
wallData[(y-blockY)*blockW+(x-blockX)] = bmap[y][x];
if(bmap[y][x] && !wallDataFound)
wallDataFound = 1;
if(bmap[y][x]==WL_FAN || bmap[y][x]==4)
{
i = (int)(fvx[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
i = (int)(fvy[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
}
}
}
if(!fanDataLen)
{
free(fanData);
fanData = NULL;
}
if(!wallDataFound)
{
free(wallData);
wallData = NULL;
}
//Index positions of all particles, using linked lists
//partsPosFirstMap is pmap for the first particle in each position
//partsPosLastMap is pmap for the last particle in each position
//partsPosCount is the number of particles in each position
//partsPosLink contains, for each particle, (i<<8)|1 of the next particle in the same position
partsPosFirstMap = calloc(fullW*fullH, sizeof(unsigned));
partsPosLastMap = calloc(fullW*fullH, sizeof(unsigned));
partsPosCount = calloc(fullW*fullH, sizeof(unsigned));
partsPosLink = calloc(NPART, sizeof(unsigned));
for(i = 0; i < NPART; i++)
{
if(partsptr[i].type)
{
x = (int)(partsptr[i].x+0.5f);
y = (int)(partsptr[i].y+0.5f);
if (x>=orig_x0 && x<orig_x0+orig_w && y>=orig_y0 && y<orig_y0+orig_h)
{
//Coordinates relative to top left corner of saved area
x -= fullX;
y -= fullY;
if (!partsPosFirstMap[y*fullW + x])
{
//First entry in list
partsPosFirstMap[y*fullW + x] = (i<<8)|1;
partsPosLastMap[y*fullW + x] = (i<<8)|1;
}
else
{
//Add to end of list
partsPosLink[partsPosLastMap[y*fullW + x]>>8] = (i<<8)|1;//link to current end of list
partsPosLastMap[y*fullW + x] = (i<<8)|1;//set as new end of list
}
partsPosCount[y*fullW + x]++;
}
}
}
//Store number of particles in each position
partsPosData = malloc(fullW*fullH*3);
partsPosDataLen = 0;
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
posCount = partsPosCount[y*fullW + x];
partsPosData[partsPosDataLen++] = (posCount&0x00FF0000)>>16;
partsPosData[partsPosDataLen++] = (posCount&0x0000FF00)>>8;
partsPosData[partsPosDataLen++] = (posCount&0x000000FF);
}
}
//Copy parts data
/* Field descriptor format:
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| tmp2 | ctype[2] | vy | vx | dcololour | ctype[1] | tmp[2] | tmp[1] | life[2] | life[1] | temp dbl len|
life[2] means a second byte (for a 16 bit field) if life[1] is present
*/
partsData = malloc(NPART * (sizeof(particle)+1));
partsDataLen = 0;
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
//Find the first particle in this position
i = partsPosFirstMap[y*fullW + x];
//Loop while there is a pmap entry
while (i)
{
unsigned short fieldDesc = 0;
int fieldDescLoc = 0, tempTemp, vTemp;
//Turn pmap entry into a partsptr index
i = i>>8;
//Type (required)
partsData[partsDataLen++] = partsptr[i].type;
//Location of the field descriptor
fieldDescLoc = partsDataLen++;
partsDataLen++;
//Extra Temperature (2nd byte optional, 1st required), 1 to 2 bytes
//Store temperature as an offset of 21C(294.15K) or go into a 16byte int and store the whole thing
if(fabs(partsptr[i].temp-294.15f)<127)
{
tempTemp = (partsptr[i].temp-294.15f);
partsData[partsDataLen++] = tempTemp;
}
else
{
fieldDesc |= 1;
tempTemp = partsptr[i].temp;
partsData[partsDataLen++] = tempTemp;
partsData[partsDataLen++] = tempTemp >> 8;
}
//Life (optional), 1 to 2 bytes
if(partsptr[i].life)
{
fieldDesc |= 1 << 1;
partsData[partsDataLen++] = partsptr[i].life;
if(partsptr[i].life > 255)
{
fieldDesc |= 1 << 2;
partsData[partsDataLen++] = partsptr[i].life >> 8;
}
}
//Tmp (optional), 1 to 2 bytes
if(partsptr[i].tmp)
{
fieldDesc |= 1 << 3;
partsData[partsDataLen++] = partsptr[i].tmp;
if(partsptr[i].tmp > 255)
{
fieldDesc |= 1 << 4;
partsData[partsDataLen++] = partsptr[i].tmp >> 8;
}
}
//Ctype (optional), 1 or 4 bytes
if(partsptr[i].ctype)
{
fieldDesc |= 1 << 5;
partsData[partsDataLen++] = partsptr[i].ctype;
if(partsptr[i].ctype > 255)
{
fieldDesc |= 1 << 9;
partsData[partsDataLen++] = (partsptr[i].ctype&0xFF000000)>>24;
partsData[partsDataLen++] = (partsptr[i].ctype&0x00FF0000)>>16;
partsData[partsDataLen++] = (partsptr[i].ctype&0x0000FF00)>>8;
}
}
//Dcolour (optional), 4 bytes
if(partsptr[i].dcolour && (partsptr[i].dcolour & 0xFF000000))
{
fieldDesc |= 1 << 6;
partsData[partsDataLen++] = (partsptr[i].dcolour&0xFF000000)>>24;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x00FF0000)>>16;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x0000FF00)>>8;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x000000FF);
}
//VX (optional), 1 byte
if(fabs(partsptr[i].vx) > 0.001f)
{
fieldDesc |= 1 << 7;
vTemp = (int)(partsptr[i].vx*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//VY (optional), 1 byte
if(fabs(partsptr[i].vy) > 0.001f)
{
fieldDesc |= 1 << 8;
vTemp = (int)(partsptr[i].vy*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//Tmp2 (optional), 1 byte
if(partsptr[i].tmp2)
{
fieldDesc |= 1 << 10;
partsData[partsDataLen++] = partsptr[i].tmp2;
}
//Write the field descriptor;
partsData[fieldDescLoc] = fieldDesc;
partsData[fieldDescLoc+1] = fieldDesc>>8;
//Get the pmap entry for the next particle in the same position
i = partsPosLink[i];
}
}
}
if(!partsDataLen)
{
free(partsData);
partsData = NULL;
}
bson_init(&b);
2012-01-01 12:32:07 -06:00
bson_append_bool(&b, "waterEEnabled", water_equal_test);
bson_append_bool(&b, "legacyEnable", legacy_enable);
bson_append_bool(&b, "gravityEnable", ngrav_enable);
bson_append_bool(&b, "paused", sys_pause);
bson_append_int(&b, "gravityMode", gravityMode);
bson_append_int(&b, "airMode", airMode);
2012-01-02 07:59:28 -06:00
//bson_append_int(&b, "leftSelectedElement", sl);
//bson_append_int(&b, "rightSelectedElement", sr);
bson_append_int(&b, "activeMenu", active_menu);
if(partsData)
bson_append_binary(&b, "parts", BSON_BIN_USER, partsData, partsDataLen);
if(partsPosData)
bson_append_binary(&b, "partsPos", BSON_BIN_USER, partsPosData, partsPosDataLen);
if(wallData)
bson_append_binary(&b, "wallMap", BSON_BIN_USER, wallData, wallDataLen);
if(fanData)
bson_append_binary(&b, "fanMap", BSON_BIN_USER, fanData, fanDataLen);
signsCount = 0;
for(i = 0; i < MAXSIGNS; i++)
{
if(signs[i].text[0] && signs[i].x>=fullX && signs[i].x<=fullX+fullW && signs[i].y>=fullY && signs[i].y<=fullY+fullH)
{
signsCount++;
}
}
if(signsCount)
{
bson_append_start_array(&b, "signs");
for(i = 0; i < MAXSIGNS; i++)
{
if(signs[i].text[0] && signs[i].x>=fullX && signs[i].x<=fullX+fullW && signs[i].y>=fullY && signs[i].y<=fullY+fullH)
{
bson_append_start_object(&b, "sign");
bson_append_string(&b, "text", signs[i].text);
bson_append_int(&b, "justification", signs[i].ju);
bson_append_int(&b, "x", signs[i].x-fullX);
bson_append_int(&b, "y", signs[i].y-fullY);
bson_append_finish_object(&b);
}
}
}
bson_append_finish_array(&b);
bson_finish(&b);
bson_print(&b);
finalData = bson_data(&b);
finalDataLen = bson_size(&b);
outputDataLen = finalDataLen*2+12;
outputData = malloc(outputDataLen);
outputData[0] = 'O';
outputData[1] = 'P';
outputData[2] = 'S';
outputData[3] = '1';
outputData[4] = SAVE_VERSION;
outputData[5] = CELL;
outputData[6] = blockW;
outputData[7] = blockH;
outputData[8] = finalDataLen;
outputData[9] = finalDataLen >> 8;
outputData[10] = finalDataLen >> 16;
outputData[11] = finalDataLen >> 24;
if (BZ2_bzBuffToBuffCompress(outputData+12, &outputDataLen, finalData, bson_size(&b), 9, 0, 0) != BZ_OK)
{
puts("Save Error\n");
free(outputData);
*size = 0;
outputData = NULL;
goto fin;
}
printf("compressed data: %d\n", outputDataLen);
*size = outputDataLen + 12;
fin:
bson_destroy(&b);
if(partsData)
free(partsData);
if(wallData)
free(wallData);
if(fanData)
free(fanData);
return outputData;
}
int parse_save_OPS(void *save, int size, int replace, int x0, int y0, unsigned char bmap[YRES/CELL][XRES/CELL], float vx[YRES/CELL][XRES/CELL], float vy[YRES/CELL][XRES/CELL], float pv[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* o_partsptr, unsigned pmap[YRES][XRES])
{
particle *partsptr = o_partsptr;
unsigned char * inputData = save, *bsonData = NULL, *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL;
int inputDataLen = size, bsonDataLen = 0, partsDataLen, partsPosDataLen, fanDataLen, wallDataLen;
int i, freeIndicesCount, x, y, returnCode = 0, j;
int *freeIndices = NULL;
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
bson b;
bson_iterator iter;
//Block sizes
blockX = x0/CELL;
blockY = y0/CELL;
blockW = inputData[6];
blockH = inputData[7];
//Full size, normalised
fullX = blockX*CELL;
fullY = blockY*CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
//From newer version
if(inputData[4] > SAVE_VERSION)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Save from newer version\n");
return 2;
}
//Incompatible cell size
if(inputData[5] > CELL)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Cell size mismatch\n");
return 1;
}
//Too large/off screen
if(blockX+blockW > XRES/CELL || blockY+blockH > YRES/CELL)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Save too large\n");
return 1;
}
bsonDataLen = ((unsigned)inputData[8]);
bsonDataLen |= ((unsigned)inputData[9]) << 8;
bsonDataLen |= ((unsigned)inputData[10]) << 16;
bsonDataLen |= ((unsigned)inputData[11]) << 24;
bsonData = malloc(bsonDataLen+1);
if(!bsonData)
{
fprintf(stderr, "Internal error while parsing save: could not allocate buffer\n");
return 3;
}
//Make sure bsonData is null terminated, since all string functions need null terminated strings
//(bson_iterator_key returns a pointer into bsonData, which is then used with strcmp)
bsonData[bsonDataLen] = 0;
if (BZ2_bzBuffToBuffDecompress(bsonData, &bsonDataLen, inputData+12, inputDataLen-12, 0, 0))
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Unable to decompress\n");
return 1;
}
if(replace)
{
//Remove everything
clear_sim();
}
bson_init_data(&b, bsonData);
bson_iterator_init(&iter, &b);
while(bson_iterator_next(&iter))
{
if(strcmp(bson_iterator_key(&iter), "signs")==0)
{
if(bson_iterator_type(&iter)==BSON_ARRAY)
{
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while(bson_iterator_next(&subiter))
{
if(strcmp(bson_iterator_key(&subiter), "sign")==0)
{
if(bson_iterator_type(&subiter)==BSON_OBJECT)
{
bson_iterator signiter;
bson_iterator_subiterator(&subiter, &signiter);
//Find a free sign ID
for (i = 0; i < MAXSIGNS; i++)
if (!signs[i].text[0])
break;
//Stop reading signs if we have no free spaces
if(i >= MAXSIGNS)
break;
while(bson_iterator_next(&signiter))
{
if(strcmp(bson_iterator_key(&signiter), "text")==0 && bson_iterator_type(&signiter)==BSON_STRING)
{
strcpy(signs[i].text, bson_iterator_string(&signiter));
clean_text(signs[i].text, 158-14);
}
else if(strcmp(bson_iterator_key(&signiter), "justification")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
signs[i].ju = bson_iterator_int(&signiter);
}
else if(strcmp(bson_iterator_key(&signiter), "x")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
signs[i].x = bson_iterator_int(&signiter)+fullX;
}
else if(strcmp(bson_iterator_key(&signiter), "y")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
signs[i].y = bson_iterator_int(&signiter)+fullY;
}
else
{
fprintf(stderr, "Unknown sign property %s\n", bson_iterator_key(&signiter));
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&subiter));
}
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "parts")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
if(strcmp(bson_iterator_key(&iter), "partsPos")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsPosDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsPosData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle position data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "wallMap")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (wallDataLen = bson_iterator_bin_len(&iter)) > 0)
{
wallData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of wall data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "fanMap")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (fanDataLen = bson_iterator_bin_len(&iter)) > 0)
{
fanData = bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of fan data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "legacyEnable")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
legacy_enable = ((int)bson_iterator_bool(&iter))?1:0;
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "gravityEnable")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
int tempGrav = ngrav_enable;
tempGrav = ((int)bson_iterator_bool(&iter))?1:0;
#ifndef RENDERER
//Change the gravity state
if(ngrav_enable != tempGrav)
{
if(tempGrav)
start_grav_async();
else
stop_grav_async();
}
#endif
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
2012-01-01 12:32:07 -06:00
else if(strcmp(bson_iterator_key(&iter), "waterEEnabled")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
water_equal_test = ((int)bson_iterator_bool(&iter))?1:0;
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "paused")==0 && !sys_pause)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
sys_pause = ((int)bson_iterator_bool(&iter))?1:0;
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "gravityMode")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT)
{
gravityMode = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "airMode")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT)
{
airMode = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
2012-01-02 07:59:28 -06:00
/*else if((strcmp(bson_iterator_key(&iter), "leftSelectedElement")==0 || strcmp(bson_iterator_key(&iter), "rightSelectedElement")) && replace)
{
if(bson_iterator_type(&iter)==BSON_INT && bson_iterator_int(&iter) > 0 && bson_iterator_int(&iter) < PT_NUM)
{
if(bson_iterator_key(&iter)[0] == 'l')
{
sl = bson_iterator_int(&iter);
}
else
{
sr = bson_iterator_int(&iter);
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}*/
else if(strcmp(bson_iterator_key(&iter), "activeMenu")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT && bson_iterator_int(&iter) > 0 && bson_iterator_int(&iter) < SC_TOTAL && msections[bson_iterator_int(&iter)].doshow)
{
active_menu = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong value for %s\n", bson_iterator_key(&iter));
}
}
}
//Read wall and fan data
if(wallData)
{
j = 0;
if(blockW * blockH > wallDataLen)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Not enough wall data\n");
goto fail;
}
for(x = 0; x < blockW; x++)
{
for(y = 0; y < blockH; y++)
{
bmap[blockY+y][blockX+x] = wallData[y*blockW+x];
if((bmap[blockY+y][blockX+x]==WL_FAN || bmap[blockY+y][blockX+x]==4) && fanData)
{
if(j+1 >= fanDataLen)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Not enough fan data\n");
}
fvx[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
fvy[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
}
}
}
}
//Read particle data
if(partsData && partsPosData)
{
int newIndex = 0, fieldDescriptor, tempTemp;
int posCount, posTotal, partsPosDataIndex = 0;
int saved_x, saved_y;
int freeIndicesIndex = 0;
if(fullW * fullH * 3 > partsPosDataLen)
{
2012-01-01 08:35:37 -06:00
fprintf(stderr, "Not enough particle position data\n");
goto fail;
}
parts_lastActiveIndex = NPART-1;
freeIndicesCount = 0;
freeIndices = calloc(sizeof(int), NPART);
for (i = 0; i<NPART; i++)
{
//Ensure ALL parts (even photons) are in the pmap so we can overwrite, keep a track of indices we can use
if (partsptr[i].type)
{
x = (int)(partsptr[i].x+0.5f);
y = (int)(partsptr[i].y+0.5f);
pmap[y][x] = (i<<8)|1;
}
else
freeIndices[freeIndicesCount++] = i;
}
i = 0;
for (saved_y=0; saved_y<fullH; saved_y++)
{
for (saved_x=0; saved_x<fullW; saved_x++)
{
//Read total number of particles at this position
posTotal = 0;
posTotal |= partsPosData[partsPosDataIndex++]<<16;
posTotal |= partsPosData[partsPosDataIndex++]<<8;
posTotal |= partsPosData[partsPosDataIndex++];
//Put the next posTotal particles at this position
for (posCount=0; posCount<posTotal; posCount++)
{
//i+3 because we have 4 bytes of required fields (type (1), descriptor (2), temp (1))
if (i+3 >= partsDataLen)
goto fail;
x = saved_x + fullX;
y = saved_y + fullY;
fieldDescriptor = partsData[i+1];
fieldDescriptor |= partsData[i+2] << 8;
if(x >= XRES || x < 0 || y >= YRES || y < 0)
{
fprintf(stderr, "Out of range [%d]: %d %d, [%d, %d], [%d, %d]\n", i, x, y, (unsigned)partsData[i+1], (unsigned)partsData[i+2], (unsigned)partsData[i+3], (unsigned)partsData[i+4]);
goto fail;
}
2012-01-01 08:35:37 -06:00
if(partsData[i] >= PT_NUM)
partsData[i] = PT_DMND; //Replace all invalid elements with diamond
if(pmap[y][x])
{
//Replace existing particle or allocated block
newIndex = pmap[y][x]>>8;
}
else if(freeIndicesIndex<freeIndicesCount)
{
//Create new particle
newIndex = freeIndices[freeIndicesIndex++];
}
else
{
//Nowhere to put new particle, tpt is sad :(
break;
}
if(newIndex < 0 || newIndex >= NPART)
goto fail;
//Clear the particle, ready for our new properties
memset(&(partsptr[newIndex]), 0, sizeof(particle));
//Required fields
partsptr[newIndex].type = partsData[i];
partsptr[newIndex].x = x;
partsptr[newIndex].y = y;
i+=3;
//Read temp
if(fieldDescriptor & 0x01)
{
//Full 16bit int
tempTemp = partsData[i++];
tempTemp |= (((unsigned)partsData[i++]) << 8);
partsptr[newIndex].temp = tempTemp;
}
else
{
//1 Byte room temp offset
tempTemp = (char)partsData[i++];
partsptr[newIndex].temp = tempTemp+294.15f;
}
//Read life
if(fieldDescriptor & 0x02)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].life = partsData[i++];
//Read 2nd byte
if(fieldDescriptor & 0x04)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].life |= (((unsigned)partsData[i++]) << 8);
}
}
//Read tmp
if(fieldDescriptor & 0x08)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp = partsData[i++];
//Read 2nd byte
if(fieldDescriptor & 0x10)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp |= (((unsigned)partsData[i++]) << 8);
}
}
//Read ctype
if(fieldDescriptor & 0x20)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].ctype = partsData[i++];
//Read additional bytes
if(fieldDescriptor & 0x200)
{
if(i+2 >= partsDataLen) goto fail;
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 24);
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 16);
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 8);
}
}
//Read dcolour
if(fieldDescriptor & 0x40)
{
if(i+3 >= partsDataLen) goto fail;
partsptr[newIndex].dcolour = (((unsigned)partsData[i++]) << 24);
partsptr[newIndex].dcolour |= (((unsigned)partsData[i++]) << 16);
partsptr[newIndex].dcolour |= (((unsigned)partsData[i++]) << 8);
partsptr[newIndex].dcolour |= ((unsigned)partsData[i++]);
}
//Read vx
if(fieldDescriptor & 0x80)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].vx = (partsData[i++]-127.0f)/16.0f;
}
//Read vy
if(fieldDescriptor & 0x100)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].vy = (partsData[i++]-127.0f)/16.0f;
}
//Read tmp2
if(fieldDescriptor & 0x400)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp2 = partsData[i++];
}
}
}
}
}
goto fin;
fail:
//Clean up everything
returnCode = 1;
fin:
bson_destroy(&b);
if(freeIndices)
free(freeIndices);
return returnCode;
}
//Old saving
pixel *prerender_save_PSv(void *save, int size, int *width, int *height)
{
unsigned char *d,*c=save;
int i,j,k,x,y,rx,ry,p=0;
int bw,bh,w,h,new_format = 0;
pixel *fb;
if (size<16)
return NULL;
if (!(c[2]==0x43 && c[1]==0x75 && c[0]==0x66) && !(c[2]==0x76 && c[1]==0x53 && c[0]==0x50))
return NULL;
if (c[2]==0x43 && c[1]==0x75 && c[0]==0x66) {
new_format = 1;
}
if (c[4]>SAVE_VERSION)
return NULL;
bw = c[6];
bh = c[7];
w = bw*CELL;
h = bh*CELL;
if (c[5]!=CELL)
return NULL;
i = (unsigned)c[8];
i |= ((unsigned)c[9])<<8;
i |= ((unsigned)c[10])<<16;
i |= ((unsigned)c[11])<<24;
d = malloc(i);
if (!d)
return NULL;
fb = calloc(w*h, PIXELSIZE);
if (!fb)
{
free(d);
return NULL;
}
if (BZ2_bzBuffToBuffDecompress((char *)d, (unsigned *)&i, (char *)(c+12), size-12, 0, 0))
goto corrupt;
size = i;
if (size < bw*bh)
goto corrupt;
k = 0;
for (y=0; y<bh; y++)
for (x=0; x<bw; x++)
{
rx = x*CELL;
ry = y*CELL;
switch (d[p])
{
case 1:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case 2:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case 3:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(j%2) && !(i%2))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xC0C0C0);
break;
case 4:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x8080FF);
k++;
break;
case 6:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xFF8080);
break;
case 7:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(i&j&1))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case 8:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(j%2) && !(i%2))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xC0C0C0);
else
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case WL_WALL:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case WL_DESTROYALL:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case WL_ALLOWLIQUID:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(j%2) && !(i%2))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xC0C0C0);
break;
case WL_FAN:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x8080FF);
k++;
break;
case WL_DETECT:
for (j=0; j<CELL; j+=2)
for (i=(j>>1)&1; i<CELL; i+=2)
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xFF8080);
break;
case WL_EWALL:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(i&j&1))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
case WL_WALLELEC:
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
if (!(j%2) && !(i%2))
fb[(ry+j)*w+(rx+i)] = PIXPACK(0xC0C0C0);
else
fb[(ry+j)*w+(rx+i)] = PIXPACK(0x808080);
break;
}
p++;
}
p += 2*k;
if (p>=size)
goto corrupt;
for (y=0; y<h; y++)
for (x=0; x<w; x++)
{
if (p >= size)
goto corrupt;
j=d[p++];
if (j<PT_NUM && j>0)
{
if (j==PT_STKM || j==PT_STKM2 || j==PT_FIGH)
{
pixel lc, hc=PIXRGB(255, 224, 178);
if (j==PT_STKM || j==PT_FIGH) lc = PIXRGB(255, 255, 255);
else lc = PIXRGB(100, 100, 255);
//only need to check upper bound of y coord - lower bounds and x<w are checked in draw_line
draw_line(fb , x-2, y-2, x+2, y-2, PIXR(hc), PIXG(hc), PIXB(hc), w);
if (y+2<h)
{
draw_line(fb , x-2, y+2, x+2, y+2, PIXR(hc), PIXG(hc), PIXB(hc), w);
draw_line(fb , x-2, y-2, x-2, y+2, PIXR(hc), PIXG(hc), PIXB(hc), w);
draw_line(fb , x+2, y-2, x+2, y+2, PIXR(hc), PIXG(hc), PIXB(hc), w);
}
if (y+6<h)
{
draw_line(fb , x, y+3, x-1, y+6, PIXR(lc), PIXG(lc), PIXB(lc), w);
draw_line(fb , x, y+3, x+1, y+6, PIXR(lc), PIXG(lc), PIXB(lc), w);
}
if (y+12<h)
{
draw_line(fb , x-1, y+6, x-3, y+12, PIXR(lc), PIXG(lc), PIXB(lc), w);
draw_line(fb , x+1, y+6, x+3, y+12, PIXR(lc), PIXG(lc), PIXB(lc), w);
}
}
else
fb[y*w+x] = ptypes[j].pcolors;
}
}
free(d);
*width = w;
*height = h;
return fb;
corrupt:
free(d);
free(fb);
return NULL;
}
void *build_save_PSv(int *size, int orig_x0, int orig_y0, int orig_w, int orig_h, unsigned char bmap[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* partsptr)
{
unsigned char *d=calloc(1,3*(XRES/CELL)*(YRES/CELL)+(XRES*YRES)*15+MAXSIGNS*262), *c;
int i,j,x,y,p=0,*m=calloc(XRES*YRES, sizeof(int));
int x0, y0, w, h, bx0=orig_x0/CELL, by0=orig_y0/CELL, bw, bh;
particle *parts = partsptr;
bw=(orig_w+orig_x0-bx0*CELL+CELL-1)/CELL;
bh=(orig_h+orig_y0-by0*CELL+CELL-1)/CELL;
// normalize coordinates
x0 = bx0*CELL;
y0 = by0*CELL;
w = bw *CELL;
h = bh *CELL;
// save the required air state
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
d[p++] = bmap[y][x];
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (bmap[y][x]==WL_FAN||bmap[y][x]==4)
{
i = (int)(fvx[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
d[p++] = i;
}
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (bmap[y][x]==WL_FAN||bmap[y][x]==4)
{
i = (int)(fvy[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
d[p++] = i;
}
// save the particle map
for (i=0; i<NPART; i++)
if (parts[i].type)
{
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
if (x>=orig_x0 && x<orig_x0+orig_w && y>=orig_y0 && y<orig_y0+orig_h) {
if (!m[(x-x0)+(y-y0)*w] ||
parts[m[(x-x0)+(y-y0)*w]-1].type == PT_PHOT ||
parts[m[(x-x0)+(y-y0)*w]-1].type == PT_NEUT)
m[(x-x0)+(y-y0)*w] = i+1;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
d[p++] = parts[i-1].type;
else
d[p++] = 0;
}
// save particle properties
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
i--;
x = (int)(parts[i].vx*16.0f+127.5f);
y = (int)(parts[i].vy*16.0f+127.5f);
if (x<0) x=0;
if (x>255) x=255;
if (y<0) y=0;
if (y>255) y=255;
d[p++] = x;
d[p++] = y;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Everybody loves a 16bit int
//d[p++] = (parts[i-1].life+3)/4;
int ttlife = (int)parts[i-1].life;
d[p++] = ((ttlife&0xFF00)>>8);
d[p++] = (ttlife&0x00FF);
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Now saving tmp!
//d[p++] = (parts[i-1].life+3)/4;
int tttmp = (int)parts[i-1].tmp;
d[p++] = ((tttmp&0xFF00)>>8);
d[p++] = (tttmp&0x00FF);
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i && (parts[i-1].type==PT_PBCN)) {
//Save tmp2
d[p++] = parts[i-1].tmp2;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Save colour (ALPHA)
d[p++] = (parts[i-1].dcolour&0xFF000000)>>24;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Save colour (RED)
d[p++] = (parts[i-1].dcolour&0x00FF0000)>>16;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Save colour (GREEN)
d[p++] = (parts[i-1].dcolour&0x0000FF00)>>8;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i) {
//Save colour (BLUE)
d[p++] = (parts[i-1].dcolour&0x000000FF);
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
//New Temperature saving uses a 16bit unsigned int for temperatures, giving a precision of 1 degree versus 36 for the old format
int tttemp = (int)parts[i-1].temp;
d[p++] = ((tttemp&0xFF00)>>8);
d[p++] = (tttemp&0x00FF);
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i && (parts[i-1].type==PT_CLNE || parts[i-1].type==PT_PCLN || parts[i-1].type==PT_BCLN || parts[i-1].type==PT_SPRK || parts[i-1].type==PT_LAVA || parts[i-1].type==PT_PIPE || parts[i-1].type==PT_LIFE || parts[i-1].type==PT_PBCN || parts[i-1].type==PT_WIRE || parts[i-1].type==PT_STOR || parts[i-1].type==PT_CONV))
d[p++] = parts[i-1].ctype;
}
j = 0;
for (i=0; i<MAXSIGNS; i++)
if (signs[i].text[0] &&
signs[i].x>=x0 && signs[i].x<x0+w &&
signs[i].y>=y0 && signs[i].y<y0+h)
j++;
d[p++] = j;
for (i=0; i<MAXSIGNS; i++)
if (signs[i].text[0] &&
signs[i].x>=x0 && signs[i].x<x0+w &&
signs[i].y>=y0 && signs[i].y<y0+h)
{
d[p++] = (signs[i].x-x0);
d[p++] = (signs[i].x-x0)>>8;
d[p++] = (signs[i].y-y0);
d[p++] = (signs[i].y-y0)>>8;
d[p++] = signs[i].ju;
x = strlen(signs[i].text);
d[p++] = x;
memcpy(d+p, signs[i].text, x);
p+=x;
}
i = (p*101+99)/100 + 612;
c = malloc(i);
//New file header uses PSv, replacing fuC. This is to detect if the client uses a new save format for temperatures
//This creates a problem for old clients, that display and "corrupt" error instead of a "newer version" error
c[0] = 0x50; //0x66;
c[1] = 0x53; //0x75;
c[2] = 0x76; //0x43;
c[3] = legacy_enable|((sys_pause<<1)&0x02)|((gravityMode<<2)&0x0C)|((airMode<<4)&0x70)|((ngrav_enable<<7)&0x80);
c[4] = SAVE_VERSION;
c[5] = CELL;
c[6] = bw;
c[7] = bh;
c[8] = p;
c[9] = p >> 8;
c[10] = p >> 16;
c[11] = p >> 24;
i -= 12;
if (BZ2_bzBuffToBuffCompress((char *)(c+12), (unsigned *)&i, (char *)d, p, 9, 0, 0) != BZ_OK)
{
free(d);
free(c);
free(m);
return NULL;
}
free(d);
free(m);
*size = i+12;
return c;
}
int parse_save_PSv(void *save, int size, int replace, int x0, int y0, unsigned char bmap[YRES/CELL][XRES/CELL], float fvx[YRES/CELL][XRES/CELL], float fvy[YRES/CELL][XRES/CELL], sign signs[MAXSIGNS], void* partsptr, unsigned pmap[YRES][XRES])
{
unsigned char *d=NULL,*c=save;
int q,i,j,k,x,y,p=0,*m=NULL, ver, pty, ty, legacy_beta=0, tempGrav = 0;
int bx0=x0/CELL, by0=y0/CELL, bw, bh, w, h;
int nf=0, new_format = 0, ttv = 0;
particle *parts = partsptr;
int *fp = malloc(NPART*sizeof(int));
//New file header uses PSv, replacing fuC. This is to detect if the client uses a new save format for temperatures
//This creates a problem for old clients, that display and "corrupt" error instead of a "newer version" error
if (size<16)
return 1;
if (!(c[2]==0x43 && c[1]==0x75 && c[0]==0x66) && !(c[2]==0x76 && c[1]==0x53 && c[0]==0x50))
return 1;
if (c[2]==0x76 && c[1]==0x53 && c[0]==0x50) {
new_format = 1;
}
if (c[4]>SAVE_VERSION)
return 2;
ver = c[4];
if (ver<34)
{
legacy_enable = 1;
}
else
{
if (ver>=44) {
legacy_enable = c[3]&0x01;
if (!sys_pause) {
sys_pause = (c[3]>>1)&0x01;
}
if (ver>=46 && replace) {
gravityMode = ((c[3]>>2)&0x03);// | ((c[3]>>2)&0x01);
airMode = ((c[3]>>4)&0x07);// | ((c[3]>>4)&0x02) | ((c[3]>>4)&0x01);
}
if (ver>=49 && replace) {
tempGrav = ((c[3]>>7)&0x01);
}
} else {
if (c[3]==1||c[3]==0) {
legacy_enable = c[3];
} else {
legacy_beta = 1;
}
}
}
bw = c[6];
bh = c[7];
if (bx0+bw > XRES/CELL)
bx0 = XRES/CELL - bw;
if (by0+bh > YRES/CELL)
by0 = YRES/CELL - bh;
if (bx0 < 0)
bx0 = 0;
if (by0 < 0)
by0 = 0;
if (c[5]!=CELL || bx0+bw>XRES/CELL || by0+bh>YRES/CELL)
return 3;
i = (unsigned)c[8];
i |= ((unsigned)c[9])<<8;
i |= ((unsigned)c[10])<<16;
i |= ((unsigned)c[11])<<24;
d = malloc(i);
if (!d)
return 1;
if (BZ2_bzBuffToBuffDecompress((char *)d, (unsigned *)&i, (char *)(c+12), size-12, 0, 0))
return 1;
size = i;
if (size < bw*bh)
return 1;
// normalize coordinates
x0 = bx0*CELL;
y0 = by0*CELL;
w = bw *CELL;
h = bh *CELL;
if (replace)
{
if (ver<46) {
gravityMode = 0;
airMode = 0;
}
clear_sim();
}
parts_lastActiveIndex = NPART-1;
m = calloc(XRES*YRES, sizeof(int));
// make a catalog of free parts
//memset(pmap, 0, sizeof(pmap)); "Using sizeof for array given as function argument returns the size of pointer."
memset(pmap, 0, sizeof(unsigned)*(XRES*YRES));
for (i=0; i<NPART; i++)
if (parts[i].type)
{
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
pmap[y][x] = (i<<8)|1;
}
else
fp[nf++] = i;
// load the required air state
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
{
if (d[p])
{
//In old saves, ignore walls created by sign tool bug
//Not ignoring other invalid walls or invalid walls in new saves, so that any other bugs causing them are easier to notice, find and fix
if (ver<71 && d[p]==WL_SIGN)
{
p++;
continue;
}
bmap[y][x] = d[p];
if (bmap[y][x]==1)
bmap[y][x]=WL_WALL;
if (bmap[y][x]==2)
bmap[y][x]=WL_DESTROYALL;
if (bmap[y][x]==3)
bmap[y][x]=WL_ALLOWLIQUID;
if (bmap[y][x]==4)
bmap[y][x]=WL_FAN;
if (bmap[y][x]==5)
bmap[y][x]=WL_STREAM;
if (bmap[y][x]==6)
bmap[y][x]=WL_DETECT;
if (bmap[y][x]==7)
bmap[y][x]=WL_EWALL;
if (bmap[y][x]==8)
bmap[y][x]=WL_WALLELEC;
if (bmap[y][x]==9)
bmap[y][x]=WL_ALLOWAIR;
if (bmap[y][x]==10)
bmap[y][x]=WL_ALLOWSOLID;
if (bmap[y][x]==11)
bmap[y][x]=WL_ALLOWALLELEC;
if (bmap[y][x]==12)
bmap[y][x]=WL_EHOLE;
if (bmap[y][x]==13)
bmap[y][x]=WL_ALLOWGAS;
}
p++;
}
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (d[(y-by0)*bw+(x-bx0)]==4||d[(y-by0)*bw+(x-bx0)]==WL_FAN)
{
if (p >= size)
goto corrupt;
fvx[y][x] = (d[p++]-127.0f)/64.0f;
}
for (y=by0; y<by0+bh; y++)
for (x=bx0; x<bx0+bw; x++)
if (d[(y-by0)*bw+(x-bx0)]==4||d[(y-by0)*bw+(x-bx0)]==WL_FAN)
{
if (p >= size)
goto corrupt;
fvy[y][x] = (d[p++]-127.0f)/64.0f;
}
// load the particle map
i = 0;
pty = p;
for (y=y0; y<y0+h; y++)
for (x=x0; x<x0+w; x++)
{
if (p >= size)
goto corrupt;
j=d[p++];
if (j >= PT_NUM) {
//TODO: Possibly some server side translation
j = PT_DUST;//goto corrupt;
}
gol[x][y]=0;
if (j)
{
if (pmap[y][x])
{
k = pmap[y][x]>>8;
}
else if (i<nf)
{
k = fp[i];
i++;
}
else
{
m[(x-x0)+(y-y0)*w] = NPART+1;
continue;
}
memset(parts+k, 0, sizeof(particle));
parts[k].type = j;
if (j == PT_COAL)
parts[k].tmp = 50;
if (j == PT_FUSE)
parts[k].tmp = 50;
if (j == PT_PHOT)
parts[k].ctype = 0x3fffffff;
if (j == PT_SOAP)
parts[k].ctype = 0;
if (j==PT_BIZR || j==PT_BIZRG || j==PT_BIZRS)
parts[k].ctype = 0x47FFFF;
parts[k].x = (float)x;
parts[k].y = (float)y;
m[(x-x0)+(y-y0)*w] = k+1;
}
}
// load particle properties
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
i--;
if (p+1 >= size)
goto corrupt;
if (i < NPART)
{
parts[i].vx = (d[p++]-127.0f)/16.0f;
parts[i].vy = (d[p++]-127.0f)/16.0f;
}
else
p += 2;
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (ver>=44) {
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
ttv = (d[p++])<<8;
ttv |= (d[p++]);
parts[i-1].life = ttv;
} else {
p+=2;
}
} else {
if (p >= size)
goto corrupt;
if (i <= NPART)
parts[i-1].life = d[p++]*4;
else
p++;
}
}
}
if (ver>=44) {
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
ttv = (d[p++])<<8;
ttv |= (d[p++]);
parts[i-1].tmp = ttv;
if (ver<53 && !parts[i-1].tmp)
for (q = 1; q<=NGOLALT; q++) {
if (parts[i-1].type==goltype[q-1] && grule[q][9]==2)
parts[i-1].tmp = grule[q][9]-1;
}
if (ver>=51 && ver<53 && parts[i-1].type==PT_PBCN)
{
parts[i-1].tmp2 = parts[i-1].tmp;
parts[i-1].tmp = 0;
}
} else {
p+=2;
}
}
}
}
if (ver>=53) {
for (j=0; j<w*h; j++)
{
i = m[j];
ty = d[pty+j];
if (i && ty==PT_PBCN)
{
if (p >= size)
goto corrupt;
if (i <= NPART)
parts[i-1].tmp2 = d[p++];
else
p++;
}
}
}
//Read ALPHA component
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (ver>=49) {
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
parts[i-1].dcolour = d[p++]<<24;
} else {
p++;
}
}
}
}
//Read RED component
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (ver>=49) {
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
parts[i-1].dcolour |= d[p++]<<16;
} else {
p++;
}
}
}
}
//Read GREEN component
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (ver>=49) {
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
parts[i-1].dcolour |= d[p++]<<8;
} else {
p++;
}
}
}
}
//Read BLUE component
for (j=0; j<w*h; j++)
{
i = m[j];
if (i)
{
if (ver>=49) {
if (p >= size) {
goto corrupt;
}
if (i <= NPART) {
parts[i-1].dcolour |= d[p++];
} else {
p++;
}
}
}
}
for (j=0; j<w*h; j++)
{
i = m[j];
ty = d[pty+j];
if (i)
{
if (ver>=34&&legacy_beta==0)
{
if (p >= size)
{
goto corrupt;
}
if (i <= NPART)
{
if (ver>=42) {
if (new_format) {
ttv = (d[p++])<<8;
ttv |= (d[p++]);
if (parts[i-1].type==PT_PUMP) {
parts[i-1].temp = ttv + 0.15;//fix PUMP saved at 0, so that it loads at 0.
} else {
parts[i-1].temp = ttv;
}
} else {
parts[i-1].temp = (d[p++]*((MAX_TEMP+(-MIN_TEMP))/255))+MIN_TEMP;
}
} else {
parts[i-1].temp = ((d[p++]*((O_MAX_TEMP+(-O_MIN_TEMP))/255))+O_MIN_TEMP)+273;
}
}
else
{
p++;
if (new_format) {
p++;
}
}
}
else
{
parts[i-1].temp = ptypes[parts[i-1].type].heat;
}
}
}
for (j=0; j<w*h; j++)
{
int gnum = 0;
i = m[j];
ty = d[pty+j];
if (i && (ty==PT_CLNE || (ty==PT_PCLN && ver>=43) || (ty==PT_BCLN && ver>=44) || (ty==PT_SPRK && ver>=21) || (ty==PT_LAVA && ver>=34) || (ty==PT_PIPE && ver>=43) || (ty==PT_LIFE && ver>=51) || (ty==PT_PBCN && ver>=52) || (ty==PT_WIRE && ver>=55) || (ty==PT_STOR && ver>=59) || (ty==PT_CONV && ver>=60)))
{
if (p >= size)
goto corrupt;
if (i <= NPART)
parts[i-1].ctype = d[p++];
else
p++;
}
// no more particle properties to load, so we can change type here without messing up loading
if (i && i<=NPART)
{
if ((player.spwn == 1 && ty==PT_STKM) || (player2.spwn == 1 && ty==PT_STKM2))
{
parts[i-1].type = PT_NONE;
}
else if (parts[i-1].type == PT_STKM)
{
STKM_init_legs(&player, i-1);
player.spwn = 1;
player.elem = PT_DUST;
}
else if (parts[i-1].type == PT_STKM2)
{
STKM_init_legs(&player2, i-1);
player2.spwn = 1;
player2.elem = PT_DUST;
}
else if (parts[i-1].type == PT_FIGH)
{
unsigned char fcount = 0;
while (fcount < 100 && fcount < (fighcount+1) && fighters[fcount].spwn==1) fcount++;
if (fcount < 100 && fighters[fcount].spwn==0)
{
parts[i-1].tmp = fcount;
fighters[fcount].spwn = 1;
fighters[fcount].elem = PT_DUST;
fighcount++;
STKM_init_legs(&(fighters[fcount]), i-1);
}
}
if (ver<48 && (ty==OLD_PT_WIND || (ty==PT_BRAY&&parts[i-1].life==0)))
{
// Replace invisible particles with something sensible and add decoration to hide it
x = (int)(parts[i-1].x+0.5f);
y = (int)(parts[i-1].y+0.5f);
parts[i-1].dcolour = 0xFF000000;
parts[i-1].type = PT_DMND;
}
if(ver<51 && ((ty>=78 && ty<=89) || (ty>=134 && ty<=146 && ty!=141))){
//Replace old GOL
parts[i-1].type = PT_LIFE;
for (gnum = 0; gnum<NGOLALT; gnum++){
if (ty==goltype[gnum])
parts[i-1].ctype = gnum;
}
ty = PT_LIFE;
}
if(ver<52 && (ty==PT_CLNE || ty==PT_PCLN || ty==PT_BCLN)){
//Replace old GOL ctypes in clone
for (gnum = 0; gnum<NGOLALT; gnum++){
if (parts[i-1].ctype==goltype[gnum])
{
parts[i-1].ctype = PT_LIFE;
parts[i-1].tmp = gnum;
}
}
}
if(ty==PT_LCRY){
if(ver<67)
{
//New LCRY uses TMP not life
if(parts[i-1].life>=10)
{
parts[i-1].life = 10;
parts[i-1].tmp2 = 10;
parts[i-1].tmp = 3;
}
else if(parts[i-1].life<=0)
{
parts[i-1].life = 0;
parts[i-1].tmp2 = 0;
parts[i-1].tmp = 0;
}
else if(parts[i-1].life < 10 && parts[i-1].life > 0)
{
parts[i-1].tmp = 1;
}
}
else
{
parts[i-1].tmp2 = parts[i-1].life;
}
}
if (!ptypes[parts[i-1].type].enabled)
parts[i-1].type = PT_NONE;
}
}
#ifndef RENDERER
//Change the gravity state
if(ngrav_enable != tempGrav && replace)
{
if(tempGrav)
start_grav_async();
else
stop_grav_async();
}
#endif
gravity_mask();
if (p >= size)
goto version1;
j = d[p++];
for (i=0; i<j; i++)
{
if (p+6 > size)
goto corrupt;
for (k=0; k<MAXSIGNS; k++)
if (!signs[k].text[0])
break;
x = d[p++];
x |= ((unsigned)d[p++])<<8;
if (k<MAXSIGNS)
signs[k].x = x+x0;
x = d[p++];
x |= ((unsigned)d[p++])<<8;
if (k<MAXSIGNS)
signs[k].y = x+y0;
x = d[p++];
if (k<MAXSIGNS)
signs[k].ju = x;
x = d[p++];
if (p+x > size)
goto corrupt;
if (k<MAXSIGNS)
{
memcpy(signs[k].text, d+p, x);
signs[k].text[x] = 0;
clean_text(signs[k].text, 158-14 /* Current max sign length */);
}
p += x;
}
version1:
if (m) free(m);
if (d) free(d);
if (fp) free(fp);
return 0;
corrupt:
if (m) free(m);
if (d) free(d);
if (fp) free(fp);
if (replace)
{
legacy_enable = 0;
clear_sim();
}
return 1;
}
void *build_thumb(int *size, int bzip2)
{
unsigned char *d=calloc(1,XRES*YRES), *c;
int i,j,x,y;
for (i=0; i<NPART; i++)
if (parts[i].type)
{
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
if (x>=0 && x<XRES && y>=0 && y<YRES)
d[x+y*XRES] = parts[i].type;
}
for (y=0; y<YRES/CELL; y++)
for (x=0; x<XRES/CELL; x++)
if (bmap[y][x])
for (j=0; j<CELL; j++)
for (i=0; i<CELL; i++)
d[x*CELL+i+(y*CELL+j)*XRES] = 0xFF;
j = XRES*YRES;
if (bzip2)
{
i = (j*101+99)/100 + 608;
c = malloc(i);
c[0] = 0x53;
c[1] = 0x68;
c[2] = 0x49;
c[3] = 0x74;
c[4] = PT_NUM;
c[5] = CELL;
c[6] = XRES/CELL;
c[7] = YRES/CELL;
i -= 8;
if (BZ2_bzBuffToBuffCompress((char *)(c+8), (unsigned *)&i, (char *)d, j, 9, 0, 0) != BZ_OK)
{
free(d);
free(c);
return NULL;
}
free(d);
*size = i+8;
return c;
}
*size = j;
return d;
}
void *transform_save(void *odata, int *size, matrix2d transform, vector2d translate)
{
void *ndata;
unsigned char (*bmapo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(unsigned char));
unsigned char (*bmapn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(unsigned char));
particle *partst = calloc(sizeof(particle), NPART);
sign *signst = calloc(MAXSIGNS, sizeof(sign));
unsigned (*pmapt)[XRES] = calloc(YRES*XRES, sizeof(unsigned));
float (*fvxo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*fvyo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*fvxn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*fvyn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*vxo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*vyo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*vxn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*vyn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*pvo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
float (*pvn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float));
int i, x, y, nx, ny, w, h, nw, nh;
vector2d pos, tmp, ctl, cbr;
vector2d cornerso[4];
unsigned char *odatac = odata;
if (parse_save(odata, *size, 0, 0, 0, bmapo, vxo, vyo, pvo, fvxo, fvyo, signst, partst, pmapt))
{
free(bmapo);
free(bmapn);
free(partst);
free(signst);
free(pmapt);
free(fvxo);
free(fvyo);
free(fvxn);
free(fvyn);
free(vxo);
free(vyo);
free(vxn);
free(vyn);
free(pvo);
free(pvn);
return odata;
}
w = odatac[6]*CELL;
h = odatac[7]*CELL;
// undo any translation caused by rotation
cornerso[0] = v2d_new(0,0);
cornerso[1] = v2d_new(w-1,0);
cornerso[2] = v2d_new(0,h-1);
cornerso[3] = v2d_new(w-1,h-1);
for (i=0; i<4; i++)
{
tmp = m2d_multiply_v2d(transform,cornerso[i]);
if (i==0) ctl = cbr = tmp; // top left, bottom right corner
if (tmp.x<ctl.x) ctl.x = tmp.x;
if (tmp.y<ctl.y) ctl.y = tmp.y;
if (tmp.x>cbr.x) cbr.x = tmp.x;
if (tmp.y>cbr.y) cbr.y = tmp.y;
}
// casting as int doesn't quite do what we want with negative numbers, so use floor()
tmp = v2d_new(floor(ctl.x+0.5f),floor(ctl.y+0.5f));
translate = v2d_sub(translate,tmp);
nw = floor(cbr.x+0.5f)-floor(ctl.x+0.5f)+1;
nh = floor(cbr.y+0.5f)-floor(ctl.y+0.5f)+1;
if (nw>XRES) nw = XRES;
if (nh>YRES) nh = YRES;
// rotate and translate signs, parts, walls
for (i=0; i<MAXSIGNS; i++)
{
if (!signst[i].text[0]) continue;
pos = v2d_new(signst[i].x, signst[i].y);
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = floor(pos.x+0.5f);
ny = floor(pos.y+0.5f);
if (nx<0 || nx>=nw || ny<0 || ny>=nh)
{
signst[i].text[0] = 0;
continue;
}
signst[i].x = nx;
signst[i].y = ny;
}
for (i=0; i<NPART; i++)
{
if (!partst[i].type) continue;
pos = v2d_new(partst[i].x, partst[i].y);
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = floor(pos.x+0.5f);
ny = floor(pos.y+0.5f);
if (nx<0 || nx>=nw || ny<0 || ny>=nh)
{
partst[i].type = PT_NONE;
continue;
}
partst[i].x = nx;
partst[i].y = ny;
}
for (y=0; y<YRES/CELL; y++)
for (x=0; x<XRES/CELL; x++)
{
pos = v2d_new(x*CELL+CELL*0.4f, y*CELL+CELL*0.4f);
pos = v2d_add(m2d_multiply_v2d(transform,pos),translate);
nx = pos.x/CELL;
ny = pos.y/CELL;
if (nx<0 || nx>=nw/CELL || ny<0 || ny>=nh/CELL)
continue;
if (bmapo[y][x])
{
bmapn[ny][nx] = bmapo[y][x];
if (bmapo[y][x]==WL_FAN)
{
fvxn[ny][nx] = fvxo[y][x];
fvyn[ny][nx] = fvyo[y][x];
}
}
vxn[ny][nx] = vxo[y][x];
vyn[ny][nx] = vyo[y][x];
pvn[ny][nx] = pvo[y][x];
}
ndata = build_save(size,0,0,nw,nh,bmapn,vxn,vyn,pvn,fvxn,fvyn,signst,partst);
free(bmapo);
free(bmapn);
free(partst);
free(signst);
free(pmapt);
free(fvxo);
free(fvyo);
free(fvxn);
free(fvyn);
free(vxo);
free(vyo);
free(vxn);
free(vyn);
free(pvo);
free(pvn);
return ndata;
}