sonic-buildimage/platform/broadcom/sonic-platform-modules-cel/dx010/modules/dx010_cpld.c
Ikki Zhu f801b8fb2d
[Seastone] fix dx010 qsfp eeprom data write issue (#13930)
Why I did it
Platform cases test_tx_disable, test_tx_disable_channel, test_power_override failed in dx010.

How I did it
Add i2c access algorithm for CPLD i2c adapters.

How to verify it
Verify it with platform_tests/api/test_sfp.py::TestSfpApi test cases.
2023-03-01 14:35:53 +08:00

936 lines
27 KiB
C

/*
* dx010_cpld.c - driver for SeaStone's CPLD
*
* Copyright (C) 2023 Celestica Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <uapi/linux/stat.h>
#define DRIVER_NAME "dx010_cpld"
#define CPLD1_VERSION_ADDR 0x100
#define CPLD2_VERSION_ADDR 0x200
#define CPLD3_VERSION_ADDR 0x280
#define CPLD4_VERSION_ADDR 0x300
#define CPLD5_VERSION_ADDR 0x380
#define RESET0108 0x250
#define RESET0910 0x251
#define RESET1118 0x2d0
#define RESET1921 0x2d1
#define RESET2229 0x3d0
#define RESET3032 0x3d1
#define LPMOD0108 0x252
#define LPMOD0910 0x253
#define LPMOD1118 0x2d2
#define LPMOD1921 0x2d3
#define LPMOD2229 0x3d2
#define LPMOD3032 0x3d3
#define ABS0108 0x254
#define ABS0910 0x255
#define ABS1118 0x2d4
#define ABS1921 0x2d5
#define ABS2229 0x3d4
#define ABS3032 0x3d5
#define INT0108 0x256
#define INT0910 0x257
#define INT1118 0x2d6
#define INT1921 0x2d7
#define INT2229 0x3d6
#define INT3032 0x3d7
#define ABS_INT0108 0x260
#define ABS_INT0910 0x261
#define ABS_INT1118 0x2E0
#define ABS_INT1921 0x2E1
#define ABS_INT2229 0x3E0
#define ABS_INT3032 0x3E1
#define ABS_INT_MSK0108 0x262
#define ABS_INT_MSK0910 0x263
#define ABS_INT_MSK1118 0x2E2
#define ABS_INT_MSK1921 0x2E3
#define ABS_INT_MSK2229 0x3E2
#define ABS_INT_MSK3032 0x3E3
#define CPLD4_INT0 0x313
#define CPLD4_INT0_MSK 0x315
#define LENGTH_PORT_CPLD 34
#define PORT_BANK1_START 1
#define PORT_BANK1_END 10
#define PORT_BANK2_START 11
#define PORT_BANK2_END 21
#define PORT_BANK3_START 22
#define PORT_BANK3_END 32
#define PORT_SFPP1 33
#define PORT_SFPP2 34
#define PORT_ID_BANK1 0x210
#define PORT_ID_BANK2 0x290
#define PORT_ID_BANK3 0x390
#define OPCODE_ID_BANK1 0x211
#define OPCODE_ID_BANK2 0x291
#define OPCODE_ID_BANK3 0x391
#define DEVADDR_ID_BANK1 0x212
#define DEVADDR_ID_BANK2 0x292
#define DEVADDR_ID_BANK3 0x392
#define CMDBYT_ID_BANK1 0x213
#define CMDBYT_ID_BANK2 0x293
#define CMDBYT_ID_BANK3 0x393
#define WRITE_ID_BANK1 0x220
#define WRITE_ID_BANK2 0x2A0
#define WRITE_ID_BANK3 0x3A0
#define READ_ID_BANK1 0x230
#define READ_ID_BANK2 0x2B0
#define READ_ID_BANK3 0x3B0
#define SSRR_ID_BANK1 0x216
#define SSRR_ID_BANK2 0x296
#define SSRR_ID_BANK3 0x396
#define SSRR_MASTER_ERR 0x80
#define SSRR_BUS_BUSY 0x40
#define I2C_BAUD_RATE_100K 0x40
struct dx010_i2c_data {
int portid;
};
struct dx010_cpld_data {
struct i2c_adapter *i2c_adapter[LENGTH_PORT_CPLD];
struct mutex cpld_lock;
uint16_t read_addr;
};
struct dx010_cpld_data *cpld_data;
static ssize_t getreg_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
uint16_t addr;
char *last;
addr = (uint16_t)strtoul(buf,&last,16);
if(addr == 0 && buf == last){
return -EINVAL;
}
cpld_data->read_addr = addr;
return count;
}
static ssize_t getreg_show(struct device *dev, struct device_attribute *attr, char *buf)
{
int len = 0;
mutex_lock(&cpld_data->cpld_lock);
len = sprintf(buf, "0x%2.2x\n",inb(cpld_data->read_addr));
mutex_unlock(&cpld_data->cpld_lock);
return len;
}
static ssize_t get_reset(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long reset = 0;
mutex_lock(&cpld_data->cpld_lock);
reset =
(inb(RESET3032) & 0x07) << (24+5) |
inb(RESET2229) << (24-3) |
(inb(RESET1921) & 0x07) << (16 + 2) |
inb(RESET1118) << (16-6) |
(inb(RESET0910) & 0x03 ) << 8 |
inb(RESET0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", reset & 0xffffffff);
}
static ssize_t setreg_store(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
uint16_t addr;
uint8_t value;
char *tok;
char clone[count];
char *pclone = clone;
char *last;
strcpy(clone, buf);
mutex_lock(&cpld_data->cpld_lock);
tok = strsep((char**)&pclone, " ");
if(tok == NULL){
mutex_unlock(&cpld_data->cpld_lock);
return -EINVAL;
}
addr = (uint16_t)strtoul(tok,&last,16);
if(addr == 0 && tok == last){
mutex_unlock(&cpld_data->cpld_lock);
return -EINVAL;
}
tok = strsep((char**)&pclone, " ");
if(tok == NULL){
mutex_unlock(&cpld_data->cpld_lock);
return -EINVAL;
}
value = (uint8_t)strtoul(tok,&last,16);
if(value == 0 && tok == last){
mutex_unlock(&cpld_data->cpld_lock);
return -EINVAL;
}
outb(value,addr);
mutex_unlock(&cpld_data->cpld_lock);
return count;
}
static ssize_t set_reset(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long reset;
int err;
mutex_lock(&cpld_data->cpld_lock);
err = kstrtoul(buf, 16, &reset);
if (err)
{
mutex_unlock(&cpld_data->cpld_lock);
return err;
}
outb( (reset >> 0) & 0xFF, RESET0108);
outb( (reset >> 8) & 0x03, RESET0910);
outb( (reset >> 10) & 0xFF, RESET1118);
outb( (reset >> 18) & 0x07, RESET1921);
outb( (reset >> 21) & 0xFF, RESET2229);
outb( (reset >> 29) & 0x07, RESET3032);
mutex_unlock(&cpld_data->cpld_lock);
return count;
}
static ssize_t get_lpmode(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long lpmod = 0;
mutex_lock(&cpld_data->cpld_lock);
lpmod =
(inb(LPMOD3032) & 0x07) << (24+5) |
inb(LPMOD2229) << (24-3) |
(inb(LPMOD1921) & 0x07) << (16 + 2) |
inb(LPMOD1118) << (16-6) |
(inb(LPMOD0910) & 0x03 ) << 8 |
inb(LPMOD0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", lpmod & 0xffffffff);
}
static ssize_t set_lpmode(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long lpmod;
int err;
mutex_lock(&cpld_data->cpld_lock);
err = kstrtoul(buf, 16, &lpmod);
if (err)
{
mutex_unlock(&cpld_data->cpld_lock);
return err;
}
outb( (lpmod >> 0) & 0xFF, LPMOD0108);
outb( (lpmod >> 8) & 0x03, LPMOD0910);
outb( (lpmod >> 10) & 0xFF, LPMOD1118);
outb( (lpmod >> 18) & 0x07, LPMOD1921);
outb( (lpmod >> 21) & 0xFF, LPMOD2229);
outb( (lpmod >> 29) & 0x07, LPMOD3032);
mutex_unlock(&cpld_data->cpld_lock);
return count;
}
static ssize_t get_modprs(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long present;
mutex_lock(&cpld_data->cpld_lock);
present =
(inb(ABS3032) & 0x07) << (24+5) |
inb(ABS2229) << (24-3) |
(inb(ABS1921) & 0x07) << (16 + 2) |
inb(ABS1118) << (16-6) |
(inb(ABS0910) & 0x03) << 8 |
inb(ABS0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", present & 0xffffffff);
}
static ssize_t get_modirq(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long irq;
mutex_lock(&cpld_data->cpld_lock);
irq =
(inb(INT3032) & 0x07) << (24+5) |
inb(INT2229) << (24-3) |
(inb(INT1921) & 0x07) << (16 + 2) |
inb(INT1118) << (16-6) |
(inb(INT0910) & 0x03) << 8 |
inb(INT0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", irq & 0xffffffff);
}
static ssize_t get_modprs_irq(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long prs_int = 0;
mutex_lock(&cpld_data->cpld_lock);
/* Clear interrupt source */
inb(CPLD4_INT0);
prs_int =
(inb(ABS_INT3032) & 0x07) << (24+5) |
inb(ABS_INT2229) << (24-3) |
(inb(ABS_INT1921) & 0x07) << (16 + 2) |
inb(ABS_INT1118) << (16-6) |
(inb(ABS_INT0910) & 0x03 ) << 8 |
inb(ABS_INT0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", prs_int & 0xffffffff);
}
static ssize_t get_modprs_msk(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned long prs_int_msk = 0;
mutex_lock(&cpld_data->cpld_lock);
prs_int_msk =
(inb(ABS_INT_MSK3032) & 0x07) << (24+5) |
inb(ABS_INT_MSK2229) << (24-3) |
(inb(ABS_INT_MSK1921) & 0x07) << (16 + 2) |
inb(ABS_INT_MSK1118) << (16-6) |
(inb(ABS_INT_MSK0910) & 0x03 ) << 8 |
inb(ABS_INT_MSK0108);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%8.8lx\n", prs_int_msk & 0xffffffff);
}
static ssize_t set_modprs_msk(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long prs_int_msk;
int err;
mutex_lock(&cpld_data->cpld_lock);
err = kstrtoul(buf, 16, &prs_int_msk);
if (err)
{
mutex_unlock(&cpld_data->cpld_lock);
return err;
}
outb( (prs_int_msk >> 0) & 0xFF, ABS_INT_MSK0108);
outb( (prs_int_msk >> 8) & 0x03, ABS_INT_MSK0910);
outb( (prs_int_msk >> 10) & 0xFF, ABS_INT_MSK1118);
outb( (prs_int_msk >> 18) & 0x07, ABS_INT_MSK1921);
outb( (prs_int_msk >> 21) & 0xFF, ABS_INT_MSK2229);
outb( (prs_int_msk >> 29) & 0x07, ABS_INT_MSK3032);
mutex_unlock(&cpld_data->cpld_lock);
return count;
}
static ssize_t get_cpld4_int0(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned char int0 = 0;
mutex_lock(&cpld_data->cpld_lock);
int0 = inb(CPLD4_INT0);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%2.2x\n", int0 & 0xff);
}
static ssize_t get_cpld4_int0_msk(struct device *dev, struct device_attribute *devattr,
char *buf)
{
unsigned char int0_msk = 0;
mutex_lock(&cpld_data->cpld_lock);
int0_msk = inb(CPLD4_INT0_MSK);
mutex_unlock(&cpld_data->cpld_lock);
return sprintf(buf,"0x%2.2x\n", int0_msk & 0xff);
}
static ssize_t set_cpld4_int0_msk(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
unsigned long int0_msk;
int err;
mutex_lock(&cpld_data->cpld_lock);
err = kstrtoul(buf, 16, &int0_msk);
if (err)
{
mutex_unlock(&cpld_data->cpld_lock);
return err;
}
outb(int0_msk & 0x3f, CPLD4_INT0_MSK);
mutex_unlock(&cpld_data->cpld_lock);
return count;
}
static DEVICE_ATTR_RW(getreg);
static DEVICE_ATTR_WO(setreg);
static DEVICE_ATTR(qsfp_reset, S_IRUGO | S_IWUSR, get_reset, set_reset);
static DEVICE_ATTR(qsfp_lpmode, S_IRUGO | S_IWUSR, get_lpmode, set_lpmode);
static DEVICE_ATTR(qsfp_modprs, S_IRUGO, get_modprs, NULL);
static DEVICE_ATTR(qsfp_modirq, S_IRUGO, get_modirq, NULL);
static DEVICE_ATTR(qsfp_modprs_irq, S_IRUGO, get_modprs_irq, NULL);
static DEVICE_ATTR(qsfp_modprs_msk, S_IRUGO | S_IWUSR, get_modprs_msk, set_modprs_msk);
static DEVICE_ATTR(cpld4_int0, S_IRUGO, get_cpld4_int0, NULL);
static DEVICE_ATTR(cpld4_int0_msk, S_IRUGO | S_IWUSR, get_cpld4_int0_msk, set_cpld4_int0_msk);
static struct attribute *dx010_lpc_attrs[] = {
&dev_attr_getreg.attr,
&dev_attr_setreg.attr,
&dev_attr_qsfp_reset.attr,
&dev_attr_qsfp_lpmode.attr,
&dev_attr_qsfp_modprs.attr,
&dev_attr_qsfp_modirq.attr,
&dev_attr_qsfp_modprs_irq.attr,
&dev_attr_qsfp_modprs_msk.attr,
&dev_attr_cpld4_int0.attr,
&dev_attr_cpld4_int0_msk.attr,
NULL,
};
static struct attribute_group dx010_lpc_attr_grp = {
.attrs = dx010_lpc_attrs,
};
static struct resource cel_dx010_lpc_resources[] = {
{
.flags = IORESOURCE_IO,
},
};
static void cel_dx010_lpc_dev_release( struct device * dev)
{
return;
}
static struct platform_device cel_dx010_lpc_dev = {
.name = DRIVER_NAME,
.id = -1,
.num_resources = ARRAY_SIZE(cel_dx010_lpc_resources),
.resource = cel_dx010_lpc_resources,
.dev = {
.release = cel_dx010_lpc_dev_release,
}
};
/**
* Read eeprom of QSFP device.
* @param a i2c adapter.
* @param addr address to read.
* @param new_data QSFP port number struct.
* @param cmd i2c command.
* @return 0 if not error, else the error code.
*/
static int i2c_read_eeprom(struct i2c_adapter *a, u16 addr,
struct dx010_i2c_data *new_data, u8 cmd, union i2c_smbus_data *data){
u32 reg;
int ioBase=0;
char byte;
short temp;
short portid, opcode, devaddr, cmdbyte0, ssrr, writedata, readdata;
__u16 word_data;
int error = -EIO;
mutex_lock(&cpld_data->cpld_lock);
if (((new_data->portid >= PORT_BANK1_START)
&& (new_data->portid <= PORT_BANK1_END))
|| (new_data->portid == PORT_SFPP1)
|| (new_data->portid == PORT_SFPP2))
{
portid = PORT_ID_BANK1;
opcode = OPCODE_ID_BANK1;
devaddr = DEVADDR_ID_BANK1;
cmdbyte0 = CMDBYT_ID_BANK1;
ssrr = SSRR_ID_BANK1;
writedata = WRITE_ID_BANK1;
readdata = READ_ID_BANK1;
}else if ((new_data->portid >= PORT_BANK2_START) && (new_data->portid <= PORT_BANK2_END)){
portid = PORT_ID_BANK2;
opcode = OPCODE_ID_BANK2;
devaddr = DEVADDR_ID_BANK2;
cmdbyte0 = CMDBYT_ID_BANK2;
ssrr = SSRR_ID_BANK2;
writedata = WRITE_ID_BANK2;
readdata = READ_ID_BANK2;
}else if ((new_data->portid >= PORT_BANK3_START) && (new_data->portid <= PORT_BANK3_END)){
portid = PORT_ID_BANK3;
opcode = OPCODE_ID_BANK3;
devaddr = DEVADDR_ID_BANK3;
cmdbyte0 = CMDBYT_ID_BANK3;
ssrr = SSRR_ID_BANK3;
writedata = WRITE_ID_BANK3;
readdata = READ_ID_BANK3;
}else{
/* Invalid parameter! */
error = -EINVAL;
goto exit;
}
while ((inb(ioBase + ssrr) & 0x40));
if ((inb(ioBase + ssrr) & 0x80) == 0x80) {
error = -EIO;
/* Read error reset the port */
outb(0x00, ioBase + ssrr);
udelay(3000);
outb(0x01, ioBase + ssrr);
goto exit;
}
byte = 0x40 +new_data->portid;
reg = cmd;
outb(byte, ioBase + portid);
outb(reg,ioBase + cmdbyte0);
byte = 33;
outb(byte, ioBase + opcode);
addr = addr << 1;
addr |= 0x01;
outb(addr, ioBase + devaddr);
while ((inb(ioBase + ssrr) & 0x40))
{
udelay(100);
}
if ((inb(ioBase + ssrr) & 0x80) == 0x80) {
/* Read error reset the port */
error = -EIO;
outb(0x00, ioBase + ssrr);
udelay(3000);
outb(0x01, ioBase + ssrr);
goto exit;
}
temp = ioBase + readdata;
word_data = inb(temp);
word_data |= (inb(++temp) << 8);
mutex_unlock(&cpld_data->cpld_lock);
data->word = word_data;
return 0;
exit:
mutex_unlock(&cpld_data->cpld_lock);
return error;
}
/**
* Read/Write eeprom of CPLD connected QSFP device.
* @param a i2c adapter.
* @param addr address to read.
* @param new_data QSFP port number struct.
* @param rw read/write flag
* @param cmd i2c command.
* @param size access size
* @return 0 if not error, else the error code.
*/
static int dx010_cpld_i2c_access(struct i2c_adapter *a, u16 addr,
struct dx010_i2c_data *new_data, char rw,
u8 cmd, int size, union i2c_smbus_data *data)
{
u32 reg;
int ioBase=0;
char byte;
char data_len = 0;
short temp;
short portid, opcode, devaddr, cmdbyte0, ssrr, writedata, readdata;
__u16 word_data;
__u8 byte_data;
int error = -EIO;
mutex_lock(&cpld_data->cpld_lock);
if (((new_data->portid >= PORT_BANK1_START)
&& (new_data->portid <= PORT_BANK1_END))
|| (new_data->portid == PORT_SFPP1)
|| (new_data->portid == PORT_SFPP2))
{
portid = PORT_ID_BANK1;
opcode = OPCODE_ID_BANK1;
devaddr = DEVADDR_ID_BANK1;
cmdbyte0 = CMDBYT_ID_BANK1;
ssrr = SSRR_ID_BANK1;
writedata = WRITE_ID_BANK1;
readdata = READ_ID_BANK1;
}else if ((new_data->portid >= PORT_BANK2_START) && (new_data->portid <= PORT_BANK2_END)){
portid = PORT_ID_BANK2;
opcode = OPCODE_ID_BANK2;
devaddr = DEVADDR_ID_BANK2;
cmdbyte0 = CMDBYT_ID_BANK2;
ssrr = SSRR_ID_BANK2;
writedata = WRITE_ID_BANK2;
readdata = READ_ID_BANK2;
}else if ((new_data->portid >= PORT_BANK3_START) && (new_data->portid <= PORT_BANK3_END)){
portid = PORT_ID_BANK3;
opcode = OPCODE_ID_BANK3;
devaddr = DEVADDR_ID_BANK3;
cmdbyte0 = CMDBYT_ID_BANK3;
ssrr = SSRR_ID_BANK3;
writedata = WRITE_ID_BANK3;
readdata = READ_ID_BANK3;
}else{
/* Invalid parameter! */
error = -EINVAL;
goto exit;
}
if (size == I2C_SMBUS_BYTE || size == I2C_SMBUS_BYTE_DATA)
data_len = 1;
else if (size == I2C_SMBUS_WORD_DATA)
data_len = 2;
else {
error = -EINVAL;
goto exit;
}
while ((inb(ioBase + ssrr) & SSRR_BUS_BUSY));
if ((inb(ioBase + ssrr) & SSRR_MASTER_ERR) == SSRR_MASTER_ERR) {
error = -EIO;
/* Read error reset the port */
outb(0x00, ioBase + ssrr);
udelay(3000);
outb(0x01, ioBase + ssrr);
goto exit;
}
byte = I2C_BAUD_RATE_100K + new_data->portid;
reg = cmd;
outb(byte, ioBase + portid);
outb(reg, ioBase + cmdbyte0);
byte = (data_len << 4) | 0x1;
outb(byte, ioBase + opcode);
addr = addr << 1;
if (rw == I2C_SMBUS_READ)
{
addr |= 0x01;
outb(addr, ioBase + devaddr);
while ((inb(ioBase + ssrr) & SSRR_BUS_BUSY))
{
udelay(100);
}
if ((inb(ioBase + ssrr) & SSRR_MASTER_ERR) == SSRR_MASTER_ERR) {
/* Read error reset the port */
error = -EIO;
outb(0x00, ioBase + ssrr);
udelay(3000);
outb(0x01, ioBase + ssrr);
goto exit;
}
temp = ioBase + readdata;
if (data_len == 1)
{
byte_data = inb(temp);
data->byte = byte_data;
}
else if (data_len == 2)
{
word_data = inb(temp);
word_data |= (inb(++temp) << 8);
data->word = word_data;
}
}
else // do i2c write
{
temp = ioBase + writedata;
if (data_len == 1)
{
byte_data = data->byte;
outb(byte_data, temp);
}
else if (data_len == 2)
{
word_data = data->word;
outb((word_data & 0xff), temp);
outb((word_data >> 4), (++temp));
}
// write dev addr
outb(addr, ioBase + devaddr);
// check bus access status
while ((inb(ioBase + ssrr) & SSRR_BUS_BUSY))
{
udelay(100);
}
if ((inb(ioBase + ssrr) & SSRR_MASTER_ERR) == SSRR_MASTER_ERR) {
/* Read error reset the port */
error = -EIO;
outb(0x00, ioBase + ssrr);
udelay(3000);
outb(0x01, ioBase + ssrr);
goto exit;
}
}
mutex_unlock(&cpld_data->cpld_lock);
return 0;
exit:
mutex_unlock(&cpld_data->cpld_lock);
return error;
}
static int dx010_i2c_access(struct i2c_adapter *a, u16 addr,
unsigned short flags, char rw, u8 cmd,
int size, union i2c_smbus_data *data)
{
int error = 0;
struct dx010_i2c_data *new_data;
/* Write the command register */
new_data = i2c_get_adapdata(a);
/* Map the size to what the chip understands */
switch (size) {
case I2C_SMBUS_BYTE:
case I2C_SMBUS_BYTE_DATA:
case I2C_SMBUS_WORD_DATA:
if(0 == dx010_cpld_i2c_access(a, addr, new_data, rw, cmd, size, data)){
error = 0;
}else{
error = -EIO;
}
break;
default:
dev_warn(&a->dev, "Unsupported transaction %d\n", size);
error = -EOPNOTSUPP;
goto Done;
}
Done:
return error;
}
static u32 dx010_i2c_func(struct i2c_adapter *a)
{
return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA;
}
static const struct i2c_algorithm dx010_i2c_algorithm = {
.smbus_xfer = dx010_i2c_access,
.functionality = dx010_i2c_func,
};
static struct i2c_adapter * cel_dx010_i2c_init(struct platform_device *pdev, int portid)
{
int error;
struct i2c_adapter *new_adapter;
struct dx010_i2c_data *new_data;
new_adapter = kzalloc(sizeof(*new_adapter), GFP_KERNEL);
if (!new_adapter)
return NULL;
new_adapter->dev.parent = &pdev->dev;
new_adapter->owner = THIS_MODULE;
new_adapter->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
new_adapter->algo = &dx010_i2c_algorithm;
snprintf(new_adapter->name, sizeof(new_adapter->name),
"SMBus dx010 i2c Adapter portid@%04x", portid);
new_data = kzalloc(sizeof(*new_data), GFP_KERNEL);
if (!new_data)
return NULL;
new_data->portid = portid;
i2c_set_adapdata(new_adapter,new_data);
error = i2c_add_adapter(new_adapter);
if(error)
return NULL;
return new_adapter;
};
static int cel_dx010_lpc_drv_probe(struct platform_device *pdev)
{
struct resource *res;
int ret = 0;
int portid_count;
cpld_data = devm_kzalloc(&pdev->dev, sizeof(struct dx010_cpld_data),
GFP_KERNEL);
if (!cpld_data)
return -ENOMEM;
mutex_init(&cpld_data->cpld_lock);
cpld_data->read_addr = CPLD1_VERSION_ADDR;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (unlikely(!res)) {
printk(KERN_ERR " Specified Resource Not Available...\n");
return -1;
}
ret = sysfs_create_group(&pdev->dev.kobj, &dx010_lpc_attr_grp);
if (ret) {
printk(KERN_ERR "Cannot create sysfs\n");
}
for(portid_count=1 ; portid_count<=LENGTH_PORT_CPLD ; portid_count++)
cpld_data->i2c_adapter[portid_count-1] =
cel_dx010_i2c_init(pdev, portid_count);
/* Enable INT0 interrupt register */
outb(inb(CPLD4_INT0_MSK) & 0xf8, CPLD4_INT0_MSK);
/* Enable modprs interrupt register */
outb(0, ABS_INT_MSK0108);
outb(0, ABS_INT_MSK0910);
outb(0, ABS_INT_MSK1118);
outb(0, ABS_INT_MSK1921);
outb(0, ABS_INT_MSK2229);
outb(0, ABS_INT_MSK3032);
return 0;
}
static int cel_dx010_lpc_drv_remove(struct platform_device *pdev)
{
int portid_count;
sysfs_remove_group(&pdev->dev.kobj, &dx010_lpc_attr_grp);
for (portid_count=1 ; portid_count<=LENGTH_PORT_CPLD ; portid_count++)
i2c_del_adapter(cpld_data->i2c_adapter[portid_count-1]);
return 0;
}
static struct platform_driver cel_dx010_lpc_drv = {
.probe = cel_dx010_lpc_drv_probe,
.remove = __exit_p(cel_dx010_lpc_drv_remove),
.driver = {
.name = DRIVER_NAME,
},
};
int cel_dx010_lpc_init(void)
{
platform_device_register(&cel_dx010_lpc_dev);
platform_driver_register(&cel_dx010_lpc_drv);
return 0;
}
void cel_dx010_lpc_exit(void)
{
platform_driver_unregister(&cel_dx010_lpc_drv);
platform_device_unregister(&cel_dx010_lpc_dev);
}
module_init(cel_dx010_lpc_init);
module_exit(cel_dx010_lpc_exit);
MODULE_AUTHOR("Pradchaya P <pphuchar@celestica.com>");
MODULE_VERSION("1.0.2");
MODULE_DESCRIPTION("Celestica SeaStone DX010 LPC Driver");
MODULE_LICENSE("GPL");