# sfputil.py # # Platform-specific SFP transceiver interface for SONiC # try: import os import logging import time import select from sonic_sfp.sfputilbase import SfpUtilBase except ImportError as e: raise ImportError("%s - required module not found" % str(e)) class SfpUtil(SfpUtilBase): """Platform-specific SfpUtil class""" PORT_START = 0 PORT_END = 31 PORTS_IN_BLOCK = 32 IOM_1_PORT_START = 0 IOM_1_PORT_END = 11 IOM_2_PORT_START = 12 IOM_2_PORT_END = 21 IOM_3_PORT_START = 22 IOM_3_PORT_END = 31 BASE_VAL_PATH = "/sys/class/i2c-adapter/i2c-{0}/{0}-003e/" OIR_FD_PATH = "/sys/devices/platform/dell_ich.0/sci_int_gpio_sus6" oir_fd = -1 epoll = -1 _port_to_eeprom_mapping = {} _port_to_i2c_mapping = { 0: [9, 18], 1: [9, 19], 2: [9, 20], 3: [9, 21], 4: [9, 22], 5: [9, 23], 6: [9, 24], 7: [9, 25], 8: [8, 26], 9: [8, 27], 10: [8, 28], 11: [8, 29], 12: [8, 31], # reordered 13: [8, 30], 14: [8, 33], # reordered 15: [8, 32], 16: [7, 34], 17: [7, 35], 18: [7, 36], 19: [7, 37], 20: [7, 38], 21: [7, 39], 22: [7, 40], 23: [7, 41], 24: [6, 42], 25: [6, 43], 26: [6, 44], 27: [6, 45], 28: [6, 46], 29: [6, 47], 30: [6, 48], 31: [6, 49] } @property def port_start(self): return self.PORT_START @property def port_end(self): return self.PORT_END @property def qsfp_ports(self): return range(0, self.PORTS_IN_BLOCK + 1) @property def iom1_port_start(self): return self.IOM_1_PORT_START @property def iom1_port_end(self): return self.IOM_1_PORT_END @property def iom2_port_start(self): return self.IOM_2_PORT_START @property def iom2_port_end(self): return self.IOM_2_PORT_END @property def iom3_port_start(self): return self.IOM_3_PORT_START @property def iom3_port_end(self): return self.IOM_3_PORT_END @property def port_to_eeprom_mapping(self): return self._port_to_eeprom_mapping @property def port_to_i2c_mapping(self): return self._port_to_i2c_mapping def __init__(self): eeprom_path = "/sys/class/i2c-adapter/i2c-{0}/i2c-{1}/{1}-0050/eeprom" for x in range(0, self.port_end+1): self.port_to_eeprom_mapping[x] = eeprom_path.format( self.port_to_i2c_mapping[x][0], self.port_to_i2c_mapping[x][1]) self.oir_fd = open(self.OIR_FD_PATH, "r") self.epoll = select.epoll() if self.oir_fd != -1: self.epoll.register(self.oir_fd.fileno(), select.EPOLLIN) SfpUtilBase.__init__(self) def __del__(self): if self.oir_fd != -1: self.epoll.unregister(self.oir_fd.fileno()) self.epoll.close() self.oir_fd.close() def get_presence(self, port_num): global i2c_line # Check for invalid port_num if port_num < self.port_start or port_num > self.port_end: return False # port_num and i2c match if port_num >= self.iom1_port_start and port_num <= self.iom1_port_end: i2c_line = 14 elif (port_num >= self.iom2_port_start and port_num <= self.iom2_port_end): i2c_line = 15 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): i2c_line = 16 try: qsfp_path = self.BASE_VAL_PATH.format(i2c_line)+"qsfp_modprs" reg_file = open(qsfp_path, "r") except IOError as e: print "Error: unable to open file: %s" % str(e) return False content = reg_file.readline().rstrip() # Absence of IOM throws read error if (content == 'read error'): return False # content is a string containing the hex representation of the register reg_value = int(content, 16) # Rationalize port settings if port_num >= self.iom2_port_start and port_num <= self.iom2_port_end: port_num = port_num % 12 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): port_num = port_num % 22 # Mask off the bit corresponding to our port mask = (1 << port_num) # ModPrsL is active low if reg_value & mask == 0: return True return False def get_low_power_mode(self, port_num): # Check for invalid port_num if port_num < self.port_start or port_num > self.port_end: return False # port_num and i2c match if port_num >= self.iom1_port_start and port_num <= self.iom1_port_end: i2c_line = 14 elif (port_num >= self.iom2_port_start and port_num <= self.iom2_port_end): i2c_line = 15 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): i2c_line = 16 try: qsfp_path = self.BASE_VAL_PATH.format(i2c_line)+"qsfp_lpmode" reg_file = open(qsfp_path, "r") except IOError as e: print "Error: unable to open file: %s" % str(e) return False content = reg_file.readline().rstrip() # Absence of IOM throws read error if (content == 'read error'): return False # content is a string containing the hex representation of the register reg_value = int(content, 16) # Rationalize port settings if port_num >= self.iom2_port_start and port_num <= self.iom2_port_end: port_num = port_num % 12 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): port_num = port_num % 22 # Mask off the bit corresponding to our port mask = (1 << port_num) # LPMode is active high if reg_value & mask == 0: return False return True def set_low_power_mode(self, port_num, lpmode): # Check for invalid port_num if port_num < self.port_start or port_num > self.port_end: return False # port_num and i2c match if port_num >= self.iom1_port_start and port_num <= self.iom1_port_end: i2c_line = 14 elif (port_num >= self.iom2_port_start and port_num <= self.iom2_port_end): i2c_line = 15 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): i2c_line = 16 try: qsfp_path = self.BASE_VAL_PATH.format(i2c_line)+"qsfp_lpmode" reg_file = open(qsfp_path, "r+") except IOError as e: print "Error: unable to open file: %s" % str(e) return False content = reg_file.readline().rstrip() # Absence of IOM throws read error if (content == 'read error'): return False # content is a string containing the hex representation of the register reg_value = int(content, 16) # Rationalize port settings if port_num >= self.iom2_port_start and port_num <= self.iom2_port_end: port_num = port_num % 12 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): port_num = port_num % 22 # Mask off the bit corresponding to our port mask = (1 << port_num) # LPMode is active high; set or clear the bit accordingly if lpmode is True: reg_value = reg_value | mask else: reg_value = reg_value & ~mask # Convert our register value back to a hex string and write back content = hex(reg_value) reg_file.seek(0) reg_file.write(content) reg_file.close() return True def reset(self, port_num): # Check for invalid port_num if port_num < self.port_start or port_num > self.port_end: return False # port_num and i2c match if port_num >= self.iom1_port_start and port_num <= self.iom1_port_end: i2c_line = 14 elif (port_num >= self.iom2_port_start and port_num <= self.iom2_port_end): i2c_line = 15 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): i2c_line = 16 try: qsfp_path = self.BASE_VAL_PATH.format(i2c_line)+"qsfp_lpmode" reg_file = open(qsfp_path, "r+") except IOError as e: print "Error: unable to open file: %s" % str(e) return False content = reg_file.readline().rstrip() # File content is a string containing the hex representation of th reg_value = int(content, 16) # Rationalize port settings if port_num >= self.iom2_port_start and port_num <= self.iom2_port_end: port_num = port_num % 12 elif (port_num >= self.iom3_port_start and port_num <= self.iom3_port_end): port_num = port_num % 22 # Mask off the bit corresponding to our port mask = (1 << port_num) # ResetL is active low reg_value = reg_value & ~mask # Convert our register value back to a hex string and write back reg_file.seek(0) reg_file.write(hex(reg_value)) reg_file.close() # Sleep 1 second to allow it to settle time.sleep(1) # Flip the bit back high and write back to the register to take # port out of reset try: qsfp_path = self.BASE_VAL_PATH.format(i2c_line)+"qsfp_lpmode" reg_file = open(qsfp_path, "w+") except IOError as e: print "Error: unable to open file: %s" % str(e) return False reg_value = reg_value | mask reg_file.seek(0) reg_file.write(hex(reg_value)) reg_file.close() return True def get_register(self, reg_file): retval = 'ERR' if (not os.path.isfile(reg_file)): print reg_file, 'not found !' return retval try: with open(reg_file, 'r') as fd: retval = fd.read() except Exception as error: logging.error("Unable to open ", reg_file, "file !") retval = retval.rstrip('\r\n') retval = retval.lstrip(" ") return retval def check_interrupts(self, port_dict): retval = 0 is_port_dict_updated = False # Read the QSFP ABS interrupt & status registers cpld2_abs_int = self.get_register( "/sys/class/i2c-adapter/i2c-14/14-003e/qsfp_abs_int") cpld2_abs_sta = self.get_register( "/sys/class/i2c-adapter/i2c-14/14-003e/qsfp_abs_sta") cpld3_abs_int = self.get_register( "/sys/class/i2c-adapter/i2c-15/15-003e/qsfp_abs_int") cpld3_abs_sta = self.get_register( "/sys/class/i2c-adapter/i2c-15/15-003e/qsfp_abs_sta") cpld4_abs_int = self.get_register( "/sys/class/i2c-adapter/i2c-16/16-003e/qsfp_abs_int") cpld4_abs_sta = self.get_register( "/sys/class/i2c-adapter/i2c-16/16-003e/qsfp_abs_sta") if (cpld2_abs_int == 'ERR' or cpld2_abs_sta == 'ERR' or cpld3_abs_int == 'ERR' or cpld3_abs_sta == 'ERR' or cpld4_abs_int == 'ERR' or cpld4_abs_sta == 'ERR'): return -1 cpld2_abs_int = int(cpld2_abs_int, 16) cpld2_abs_sta = int(cpld2_abs_sta, 16) cpld3_abs_int = int(cpld3_abs_int, 16) cpld3_abs_sta = int(cpld3_abs_sta, 16) cpld4_abs_int = int(cpld4_abs_int, 16) cpld4_abs_sta = int(cpld4_abs_sta, 16) # Make it contiguous (discard reserved bits) interrupt_reg = (cpld2_abs_int & 0xfff) |\ ((cpld3_abs_int & 0x3ff) << 12) |\ ((cpld4_abs_int & 0x3ff) << 22) status_reg = (cpld2_abs_sta & 0xfff) |\ ((cpld3_abs_sta & 0x3ff) << 12) |\ ((cpld4_abs_sta & 0x3ff) << 22) port = self.port_start while port <= self.port_end: if interrupt_reg & (1 << port): # update only if atleast one port has generated # interrupt is_port_dict_updated = True if status_reg & (1 << port): # status reg 1 => optics is removed port_dict[port] = '0' else: # status reg 0 => optics is inserted port_dict[port] = '1' port += 1 return retval, is_port_dict_updated def get_transceiver_change_event(self, timeout=0): port_dict = {} try: # We get notified when there is an SCI interrupt from GPIO SUS6 # Check for missed interrupts by invoking self.check_interrupts # it will update the port_dict. # Then poll for new xcvr insertion/removal and # call self.check_interrupts again and return retval, is_port_dict_updated = self.check_interrupts(port_dict) if ((retval == 0) and (is_port_dict_updated is True)): return True, port_dict # Block until an xcvr is inserted or removed with timeout = -1 events = self.epoll.poll( timeout=timeout if timeout != 0 else -1) if events: # check interrupts and return the port_dict retval, is_port_dict_updated = \ self.check_interrupts(port_dict) if (retval != 0): return False, {} return True, port_dict except: return False, {} return False, {}