/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include //#include "I2CHostCommunication.h" #define IMPLEMENT_IPMI_CODE 1 int USE_IPMI=0; //================================= #if IMPLEMENT_IPMI_CODE #include #include #include #include #define IPMI_MAX_INTF (4) #define NETFN_OEM 0x30 #define CMD_GETDATA 0x31 #define CMD_SETDATA 0x32 struct mutex ipmi_mutex; static void msg_handler(struct ipmi_recv_msg *msg,void* handler_data); static ipmi_user_t ipmi_mh_user = NULL; static struct ipmi_user_hndl ipmi_hndlrs = { .ipmi_recv_hndl = msg_handler,}; static atomic_t dummy_count = ATOMIC_INIT(0); static void dummy_smi_free(struct ipmi_smi_msg *msg) { atomic_dec(&dummy_count); } static void dummy_recv_free(struct ipmi_recv_msg *msg) { atomic_dec(&dummy_count); } static struct ipmi_smi_msg halt_smi_msg = { .done = dummy_smi_free }; static struct ipmi_recv_msg halt_recv_msg = { .done = dummy_recv_free }; #endif //================================= #define USE_SMBUS 1 #define FAN_NUM 4 #define PSU_NUM 2 struct __attribute__ ((__packed__)) psoc_psu_layout { u16 psu1_iin; u16 psu2_iin; u16 psu1_iout; u16 psu2_iout; u16 psu1_pin; u16 psu2_pin; u16 psu1_pout; u16 psu2_pout; u16 psu1_vin; u16 psu2_vin; u16 psu1_vout; u16 psu2_vout; }; struct __attribute__ ((__packed__)) psoc_layout { u8 ctl; //offset: 0 u16 switch_temp; //offset: 1 u8 reserve0; //offset: 3 u8 fw_upgrade; //offset: 4 //i2c bridge u8 i2c_st; //offset: 5 u8 i2c_ctl; //offset: 6 u8 i2c_addr; //offset: 7 u8 i2c_data[0x20]; //offset: 8 //gpo u8 led_ctl; //offset: 28 u8 gpio; //offset: 29 //pwm duty u8 pwm[FAN_NUM]; //offset: 2a u8 pwm_psu[PSU_NUM]; //offset: 2e //fan rpm u16 fan[FAN_NUM*2]; //offset: 30 u8 reserve1[4]; //offset: 40 //gpi u8 gpi_fan; //offset: 44 //psu state u8 psu_state; //offset: 45 //temperature u16 temp[5]; //offset: 46 u16 temp_psu[PSU_NUM]; //offset: 50 //version u8 version[2]; //offset: 54 u8 reserve2[4]; //offset: 56 struct psoc_psu_layout psu_info; //offset: 5a }; /* definition */ /* definition */ #define PSOC_OFF(m) offsetof(struct psoc_layout, m) #define PSOC_PSU_OFF(m) offsetof(struct psoc_psu_layout, m) #define SWITCH_TMP_OFFSET PSOC_OFF(switch_temp) #define PWM_OFFSET PSOC_OFF(pwm) #define THERMAL_OFFSET PSOC_OFF(temp) #define RPM_OFFSET PSOC_OFF(fan) #define DIAG_FLAG_OFFSET PSOC_OFF(ctl) #define FAN_LED_OFFSET PSOC_OFF(led_ctl) #define FAN_GPI_OFFSET PSOC_OFF(gpi_fan) #define PSOC_PSU_OFFSET PSOC_OFF(psu_state) #define VERSION_OFFSET PSOC_OFF(version) #define PSU_INFO_OFFSET PSOC_OFF(psu_info) /* Each client has this additional data */ struct psoc_data { struct device *hwmon_dev; struct mutex update_lock; u32 diag; }; /*-----------------------------------------------------------------------*/ #if IMPLEMENT_IPMI_CODE static void msg_handler(struct ipmi_recv_msg *recv_msg,void* handler_data) { struct completion *comp = recv_msg->user_msg_data; if (comp) complete(comp); else ipmi_free_recv_msg(recv_msg); return; } int ipmi_command(char NetFn, char cmd,char *data,int data_length, char* result, int* result_length) { int rv=0,i; struct ipmi_system_interface_addr addr; uint8_t _data[data_length]; struct kernel_ipmi_msg msg; struct completion comp; if(!mutex_trylock(&ipmi_mutex)) return 0; // for (i=0,rv=1; iaddr; msg[0].buf = msgbuf; msg[0].len = 1; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].buf = buf; msg[1].len = count; status = i2c_transfer(client->adapter, msg, 2); if(status == 2) status = count; return status; #endif } static ssize_t psoc_i2c_write(struct i2c_client *client, char *buf, unsigned offset, size_t count) { #if USE_SMBUS if(USE_IPMI==0) { int i; for(i=0; iaddr; msg.flags = 0; /* msg.buf is u8 and casts will mask the values */ msg.buf = writebuf; msg.buf[i++] = offset; memcpy(&msg.buf[i], buf, count); msg.len = i + count; status = i2c_transfer(client->adapter, &msg, 1); if (status == 1) status = count; return status; #endif } #if 0 static u32 psoc_read32(struct i2c_client *client, u8 offset) { u32 value = 0; u8 buf[4]; if( psoc_i2c_read(client, buf, offset, 4) == 4) value = (buf[0]<<24 | buf[1]<<16 | buf[2]<<8 | buf[3]); return value; } #endif static u16 psoc_read16(struct i2c_client *client, u8 offset) { u16 value = 0; u8 buf[2]; if(psoc_i2c_read(client, buf, offset, 2) == 2) value = (buf[0]<<8 | buf[1]<<0); return value; } static u8 psoc_read8(struct i2c_client *client, u8 offset) { u8 value = 0; u8 buf = 0; if(psoc_i2c_read(client, &buf, offset, 1) == 1) value = buf; return value; } //PSOC i2c bridge regsters #define PSOC_I2C_STATUS 0x05 #define PSOC_I2C_CNTRL 0x06 #define PSOC_I2C_ADDR 0x07 #define PSOC_I2C_DATA 0x08 //status bit definition #define PSOC_I2C_START (1 << 0) #define PSOC_PMB_SEL (1 << 7) //addr bits definition #define PSOC_I2C_READ (1 << 0) //PMBUS registers definition #define PMBUS_READ_VIN (0x88) #define PMBUS_READ_IIN (0x89) #define PMBUS_READ_VOUT (0x8B) #define PMBUS_READ_IOUT (0x8C) #define PMBUS_READ_POUT (0x96) #define PMBUS_READ_PIN (0x97) /* CPLD report the PSU0 status 000 = PSU normal operation 100 = PSU fault 010 = PSU unpowered 111 = PSU not installed 7 6 | 5 4 3 | 2 1 0 ---------------------- | psu1 | psu0 */ static char* psu_str[] = { "normal", //000 "NA", //001 "unpowered", //010 "NA", //011 "fault", //100 "NA", //101 "NA", //110 "not installed", //111 }; static ssize_t show_psu_st(struct device *dev, struct device_attribute *da, char *buf) { u32 status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 byte; int shift = (attr->index == 0)?3:0; mutex_lock(&data->update_lock); status = psoc_i2c_read(client, &byte, PSOC_PSU_OFFSET, 1); mutex_unlock(&data->update_lock); byte = (byte >> shift) & 0x7; status = sprintf (buf, "%d : %s\n", byte, psu_str[byte]); return strlen(buf); } /*-----------------------------------------------------------------------*/ /* sysfs attributes for hwmon */ #define PSU1 0x5800 #define PSU2 0x5900 #define BMC_I2cBus 3 //BMC's I2C-1 #define PMBus_Vender 0x99 #define PMBus_Serial 0x9E #define PMBus_Temp2 0x8E #define PMBus_Version 0x9B #define MaxLeng_Result 0x20 #define MaxLog static long pmbus_reg2data_linear(int data, int linear16); static ssize_t show_ipmi_i2c(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); uint8_t data[4],result[MaxLeng_Result]; int result_len; data[0] = BMC_I2cBus; data[1] = (attr->index & 0xFF00 ) >>7; data[3] = attr->index & 0xff; if(data[3]==PMBus_Temp2) data[2]=2; else data[2]=MaxLeng_Result; if(ipmi_command(0x06, 0x52,data,4, result, &result_len)==0) { if(data[3]==PMBus_Temp2) { return sprintf(buf, "%ld \n", pmbus_reg2data_linear(result[0] | (result[1]<<8), 0 )); } result[result[0]+1]='\0'; return sprintf(buf, "%s\n",&result[1] ); } else return 0; } static ssize_t show_ipmi_sollog(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); uint8_t data[5],result[256]; int result_len; uint32_t i; for(i=0;i<0xffffff;i+=255) { data[0] = attr->index; data[1] = (i & 0x0000ff); data[2] = (i & 0x00ff00)>>8; data[3] = (i & 0xff0000)>>16; data[4] = 0; result_len=0; if(ipmi_command(0x32, 0xFE, data, 5, result, &result_len)==0) { if(result_len==0) break; result[result_len+1]='\0'; printk("%s",result); } else break; if(result_len==0) break; } return 0; } static ssize_t show_thermal(struct device *dev, struct device_attribute *da, char *buf) { u16 status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index * 2 + THERMAL_OFFSET; mutex_lock(&data->update_lock); status = psoc_read16(client, offset); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", (s8)(status>>8) * 1000 ); } static ssize_t show_pwm(struct device *dev, struct device_attribute *da, char *buf) { int status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index + PWM_OFFSET; mutex_lock(&data->update_lock); status = psoc_read8(client, offset); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", status); } static ssize_t set_pwm(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index + PWM_OFFSET; u8 pwm = simple_strtol(buf, NULL, 10); if(pwm > 255) pwm = 255; if(data->diag) { mutex_lock(&data->update_lock); psoc_i2c_write(client, &pwm, offset, 1); mutex_unlock(&data->update_lock); } return count; } static ssize_t show_rpm(struct device *dev, struct device_attribute *da, char *buf) { int status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index*2 + RPM_OFFSET; mutex_lock(&data->update_lock); status = psoc_read16(client, offset); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", status); } static ssize_t show_switch_tmp(struct device *dev, struct device_attribute *da, char *buf) { u16 status; struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u16 temp = 0; mutex_lock(&data->update_lock); status = psoc_i2c_read(client, (u8*)&temp, SWITCH_TMP_OFFSET, 2); mutex_unlock(&data->update_lock); status = sprintf (buf, "%d\n", (s8)(temp>>8) * 1000 ); return strlen(buf); } static ssize_t set_switch_tmp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { //struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); long temp = simple_strtol(buf, NULL, 10); u16 temp2 = ( (temp/1000) <<8 ) & 0xFF00 ; //printk("set_switch_tmp temp=%d, temp2=0x%x (%x,%x)\n", temp, temp2, ( ( (temp/1000) <<8 ) & 0xFF00 ), (( (temp%1000) / 10 ) & 0xFF)); mutex_lock(&data->update_lock); psoc_i2c_write(client, (u8*)&temp2, SWITCH_TMP_OFFSET, 2); mutex_unlock(&data->update_lock); return count; } static ssize_t show_diag(struct device *dev, struct device_attribute *da, char *buf) { u16 status; struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 diag_flag = 0; mutex_lock(&data->update_lock); status = psoc_i2c_read(client, (u8*)&diag_flag, DIAG_FLAG_OFFSET, 1); mutex_unlock(&data->update_lock); data->diag = (diag_flag & 0x80)?1:0; status = sprintf (buf, "%d\n", data->diag); return strlen(buf); } static ssize_t set_diag(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { //struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 value = 0; u8 diag = simple_strtol(buf, NULL, 10); diag = diag?1:0; data->diag = diag; mutex_lock(&data->update_lock); psoc_i2c_read(client, (u8*)&value, DIAG_FLAG_OFFSET, 1); if(diag) value |= (1<<7); else value &= ~(1<<7); psoc_i2c_write(client, (u8*)&value, DIAG_FLAG_OFFSET, 1); mutex_unlock(&data->update_lock); return count; } static ssize_t show_version(struct device *dev, struct device_attribute *da, char *buf) { u16 status; //struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); status = psoc_read16(client, VERSION_OFFSET); mutex_unlock(&data->update_lock); return sprintf(buf, "ver: %x.%x\n", (status & 0xFF00)>>8, (status & 0xFF) ); } static ssize_t show_fan_led(struct device *dev, struct device_attribute *da, char *buf) { int status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 bit = attr->index; mutex_lock(&data->update_lock); status = psoc_read8(client, FAN_LED_OFFSET); mutex_unlock(&data->update_lock); return sprintf(buf, "%d\n", (status & (1<index; u8 led_state = 0; u8 v = simple_strtol(buf, NULL, 10); if(data->diag) { mutex_lock(&data->update_lock); led_state = psoc_read8(client, FAN_LED_OFFSET); if(v) led_state |= (1<update_lock); } return count; } static ssize_t show_value8(struct device *dev, struct device_attribute *da, char *buf) { int status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index; mutex_lock(&data->update_lock); status = psoc_read8(client, offset); mutex_unlock(&data->update_lock); return sprintf(buf, "0x%02X\n", status ); } static long pmbus_reg2data_linear(int data, int linear16) { s16 exponent; s32 mantissa; long val; if (linear16) { /* LINEAR16 */ exponent = -9; mantissa = (u16) data; } else { /* LINEAR11 */ exponent = ((s16)data) >> 11; exponent = ((s16)( data & 0xF800) ) >> 11; mantissa = ((s32)((data & 0x7ff) << 5)) >> 5; } //printk("data=%d, m=%d, e=%d\n", data, exponent, mantissa); val = mantissa; /* scale result to micro-units for power sensors */ val = val * 1000L; if (exponent >= 0) val <<= exponent; else val >>= -exponent; return val; } static ssize_t show_psu_psoc(struct device *dev, struct device_attribute *da, char *buf) { u16 status; struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct i2c_client *client = to_i2c_client(dev); struct psoc_data *data = i2c_get_clientdata(client); u8 offset = attr->index + PSU_INFO_OFFSET; mutex_lock(&data->update_lock); status = psoc_read16(client, offset); mutex_unlock(&data->update_lock); return sprintf(buf, "%ld \n", pmbus_reg2data_linear(status, strstr(attr->dev_attr.attr.name, "vout")? 1:0 )); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_thermal, 0, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_thermal, 0, 1); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_thermal, 0, 2); static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_thermal, 0, 3); static SENSOR_DEVICE_ATTR(temp5_input, S_IRUGO, show_thermal, 0, 4); static SENSOR_DEVICE_ATTR(thermal_psu1, S_IRUGO, show_thermal, 0, 5); static SENSOR_DEVICE_ATTR(thermal_psu2, S_IRUGO, show_thermal, 0, 6); static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 1); static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 2); static SENSOR_DEVICE_ATTR(pwm4, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 3); static SENSOR_DEVICE_ATTR(pwm_psu1, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 4); static SENSOR_DEVICE_ATTR(pwm_psu2, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 5); static SENSOR_DEVICE_ATTR(psu0, S_IRUGO, show_psu_st, 0, 0); static SENSOR_DEVICE_ATTR(psu1, S_IRUGO, show_psu_st, 0, 1); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_rpm, 0, 0); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_rpm, 0, 1); static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_rpm, 0, 2); static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_rpm, 0, 3); static SENSOR_DEVICE_ATTR(fan5_input, S_IRUGO, show_rpm, 0, 4); static SENSOR_DEVICE_ATTR(fan6_input, S_IRUGO, show_rpm, 0, 5); static SENSOR_DEVICE_ATTR(fan7_input, S_IRUGO, show_rpm, 0, 6); static SENSOR_DEVICE_ATTR(fan8_input, S_IRUGO, show_rpm, 0, 7); static SENSOR_DEVICE_ATTR(rpm_psu1, S_IRUGO, show_rpm, 0, 8); static SENSOR_DEVICE_ATTR(rpm_psu2, S_IRUGO, show_rpm, 0, 9); static SENSOR_DEVICE_ATTR(switch_tmp, S_IWUSR|S_IRUGO, show_switch_tmp, set_switch_tmp, 0); static SENSOR_DEVICE_ATTR(diag, S_IWUSR|S_IRUGO, show_diag, set_diag, 0); static SENSOR_DEVICE_ATTR(version, S_IRUGO, show_version, 0, 0); static SENSOR_DEVICE_ATTR(fan_led_grn1, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 0); static SENSOR_DEVICE_ATTR(fan_led_grn2, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 1); static SENSOR_DEVICE_ATTR(fan_led_grn3, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 2); static SENSOR_DEVICE_ATTR(fan_led_grn4, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 3); static SENSOR_DEVICE_ATTR(fan_led_red1, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 4); static SENSOR_DEVICE_ATTR(fan_led_red2, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 5); static SENSOR_DEVICE_ATTR(fan_led_red3, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 6); static SENSOR_DEVICE_ATTR(fan_led_red4, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 7); static SENSOR_DEVICE_ATTR(fan_gpi, S_IRUGO, show_value8, 0, FAN_GPI_OFFSET); static SENSOR_DEVICE_ATTR(psoc_psu1_vin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vin)); static SENSOR_DEVICE_ATTR(psoc_psu1_vout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vout)); static SENSOR_DEVICE_ATTR(psoc_psu1_iin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iin)); static SENSOR_DEVICE_ATTR(psoc_psu1_iout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iout)); static SENSOR_DEVICE_ATTR(psoc_psu1_pin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pin)); static SENSOR_DEVICE_ATTR(psoc_psu1_pout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pout)); static SENSOR_DEVICE_ATTR(psoc_psu2_vin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vin)); static SENSOR_DEVICE_ATTR(psoc_psu2_vout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vout)); static SENSOR_DEVICE_ATTR(psoc_psu2_iin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iin)); static SENSOR_DEVICE_ATTR(psoc_psu2_iout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iout)); static SENSOR_DEVICE_ATTR(psoc_psu2_pin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pin)); static SENSOR_DEVICE_ATTR(psoc_psu2_pout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pout)); //IPMI static SENSOR_DEVICE_ATTR(thermal2_psu1, S_IRUGO, show_ipmi_i2c, 0, PSU1 | PMBus_Temp2); static SENSOR_DEVICE_ATTR(psoc_psu1_vender, S_IRUGO, show_ipmi_i2c, 0, PSU1 | PMBus_Vender); static SENSOR_DEVICE_ATTR(psoc_psu1_serial, S_IRUGO, show_ipmi_i2c, 0, PSU1 | PMBus_Serial); static SENSOR_DEVICE_ATTR(psoc_psu1_version, S_IRUGO, show_ipmi_i2c, 0, PSU1 | PMBus_Version); static SENSOR_DEVICE_ATTR(thermal2_psu2, S_IRUGO, show_ipmi_i2c, 0, PSU2 | PMBus_Temp2); static SENSOR_DEVICE_ATTR(psoc_psu2_vender, S_IRUGO, show_ipmi_i2c, 0, PSU2 | PMBus_Vender); static SENSOR_DEVICE_ATTR(psoc_psu2_serial, S_IRUGO, show_ipmi_i2c, 0, PSU2 | PMBus_Serial); static SENSOR_DEVICE_ATTR(psoc_psu2_version, S_IRUGO, show_ipmi_i2c, 0, PSU2 | PMBus_Version); static SENSOR_DEVICE_ATTR(sollog1, S_IRUGO, show_ipmi_sollog, 0, 1); static SENSOR_DEVICE_ATTR(sollog2, S_IRUGO, show_ipmi_sollog, 0, 2); static struct attribute *psoc_attributes[] = { //thermal &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp5_input.dev_attr.attr, &sensor_dev_attr_thermal_psu1.dev_attr.attr, &sensor_dev_attr_thermal_psu2.dev_attr.attr, //pwm &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm4.dev_attr.attr, &sensor_dev_attr_pwm_psu1.dev_attr.attr, &sensor_dev_attr_pwm_psu2.dev_attr.attr, //rpm &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan5_input.dev_attr.attr, &sensor_dev_attr_fan6_input.dev_attr.attr, &sensor_dev_attr_fan7_input.dev_attr.attr, &sensor_dev_attr_fan8_input.dev_attr.attr, &sensor_dev_attr_rpm_psu1.dev_attr.attr, &sensor_dev_attr_rpm_psu2.dev_attr.attr, //switch temperature &sensor_dev_attr_switch_tmp.dev_attr.attr, //diag flag &sensor_dev_attr_diag.dev_attr.attr, //version &sensor_dev_attr_version.dev_attr.attr, //fan led &sensor_dev_attr_fan_led_grn1.dev_attr.attr, &sensor_dev_attr_fan_led_grn2.dev_attr.attr, &sensor_dev_attr_fan_led_grn3.dev_attr.attr, &sensor_dev_attr_fan_led_grn4.dev_attr.attr, &sensor_dev_attr_fan_led_red1.dev_attr.attr, &sensor_dev_attr_fan_led_red2.dev_attr.attr, &sensor_dev_attr_fan_led_red3.dev_attr.attr, &sensor_dev_attr_fan_led_red4.dev_attr.attr, //fan GPI &sensor_dev_attr_fan_gpi.dev_attr.attr, &sensor_dev_attr_psu0.dev_attr.attr, &sensor_dev_attr_psu1.dev_attr.attr, //psu_psoc, new added on psoc 1.9 &sensor_dev_attr_psoc_psu1_vin.dev_attr.attr, &sensor_dev_attr_psoc_psu1_vout.dev_attr.attr, &sensor_dev_attr_psoc_psu1_iin.dev_attr.attr, &sensor_dev_attr_psoc_psu1_iout.dev_attr.attr, &sensor_dev_attr_psoc_psu1_pin.dev_attr.attr, &sensor_dev_attr_psoc_psu1_pout.dev_attr.attr, &sensor_dev_attr_psoc_psu2_vin.dev_attr.attr, &sensor_dev_attr_psoc_psu2_vout.dev_attr.attr, &sensor_dev_attr_psoc_psu2_iin.dev_attr.attr, &sensor_dev_attr_psoc_psu2_iout.dev_attr.attr, &sensor_dev_attr_psoc_psu2_pin.dev_attr.attr, &sensor_dev_attr_psoc_psu2_pout.dev_attr.attr, //ipmi_command &sensor_dev_attr_thermal2_psu1.dev_attr.attr, &sensor_dev_attr_psoc_psu1_vender.dev_attr.attr, &sensor_dev_attr_psoc_psu1_serial.dev_attr.attr, &sensor_dev_attr_psoc_psu1_version.dev_attr.attr, &sensor_dev_attr_thermal2_psu2.dev_attr.attr, &sensor_dev_attr_psoc_psu2_vender.dev_attr.attr, &sensor_dev_attr_psoc_psu2_serial.dev_attr.attr, &sensor_dev_attr_psoc_psu2_version.dev_attr.attr, &sensor_dev_attr_sollog1.dev_attr.attr, &sensor_dev_attr_sollog2.dev_attr.attr, NULL }; static const struct attribute_group psoc_group = { .attrs = psoc_attributes, }; /*-----------------------------------------------------------------------*/ /* device probe and removal */ static int psoc_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct psoc_data *data; int status,i,rv; printk("+%s\n", __func__); if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) return -EIO; data = kzalloc(sizeof(struct psoc_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); data->diag = 0; #if IMPLEMENT_IPMI_CODE for (i=0,rv=1; idev.kobj, &psoc_group); if (status) goto exit_free; data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { status = PTR_ERR(data->hwmon_dev); goto exit_remove; } dev_info(&client->dev, "%s: sensor '%s'\n", dev_name(data->hwmon_dev), client->name); return 0; exit_remove: sysfs_remove_group(&client->dev.kobj, &psoc_group); exit_free: i2c_set_clientdata(client, NULL); kfree(data); return status; } static int psoc_remove(struct i2c_client *client) { struct psoc_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &psoc_group); i2c_set_clientdata(client, NULL); kfree(data); return 0; } static const struct i2c_device_id psoc_ids[] = { { "inv_psoc", 0, }, { /* LIST END */ } }; MODULE_DEVICE_TABLE(i2c, psoc_ids); static struct i2c_driver psoc_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "inv_psoc", }, .probe = psoc_probe, .remove = psoc_remove, .id_table = psoc_ids, }; /*-----------------------------------------------------------------------*/ /* module glue */ static int __init inv_psoc_init(void) { return i2c_add_driver(&psoc_driver); } static void __exit inv_psoc_exit(void) { i2c_del_driver(&psoc_driver); } MODULE_AUTHOR("eddie.lan "); MODULE_DESCRIPTION("inv psoc driver"); MODULE_LICENSE("GPL"); module_init(inv_psoc_init); module_exit(inv_psoc_exit);