/* * A hwmon driver for the CIG cs6436-54P Power Module * * Copyright (C) 2018 Cambridge, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i2c-algo-lpc.h" #define MAX_FAN_DUTY_CYCLE 100 /* Address scanned */ static const unsigned short normal_i2c[] = {I2C_CLIENT_END }; /* This is additional data */ struct cs6436_54p_psu_data { struct device *hwmon_dev; struct mutex update_lock; char valid; unsigned long last_updated; /* In jiffies */ /* Registers value */ u8 vout_mode; u16 v_in; u16 v_out; u16 i_in; u16 i_out; u16 p_in; u16 p_out; u16 temp_input[3]; u8 temp_fault; u8 fan_fault; u16 fan_duty_cycle[2]; u16 fan_speed[2]; u8 mfr_id[8]; u8 mfr_model[20]; u8 mfr_serial[20]; u8 psu_is_present; u8 psu_is_good; struct i2c_client *client; struct bin_attribute *bin; /* eeprom data */ }; static int two_complement_to_int(u16 data, u8 valid_bit, int mask); static ssize_t set_fan_duty_cycle(struct device *dev, struct device_attribute *dev_attr, const char *buf, size_t count); static ssize_t for_linear_data(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_fan_fault(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_fan_warning(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_temp_fault(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_temp_warning(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_vout_data(struct device *dev, struct device_attribute *dev_attr, char *buf); static int cs6436_54p_psu_read_byte(struct i2c_client *client, u8 reg); static int cs6436_54p_psu_read_word(struct i2c_client *client, u8 reg); static int cs6436_54p_psu_write_word(struct i2c_client *client, u8 reg, u16 value); static int cs6436_54p_psu_read_block(struct i2c_client *client, u8 command, u8 *data, int data_len); static struct cs6436_54p_psu_data *cs6436_54p_psu_update_device(struct device *dev); static ssize_t for_ascii(struct device *dev, struct device_attribute *dev_attr, char *buf); static ssize_t for_status(struct device *dev, struct device_attribute *dev_attr, char *buf); enum cs6436_54p_psu_sysfs_attributes { PSU_V_IN, PSU_V_OUT, PSU_I_IN, PSU_I_OUT, PSU_P_IN, PSU_P_OUT, PSU_TEMP1_INPUT, PSU_TEMP2_INPUT, PSU_TEMP3_INPUT, PSU_TEMP_FAULT, PSU_TEMP_WARN, PSU_FAN1_FAULT, PSU_FAN1_WARN, PSU_FAN1_DUTY_CYCLE, PSU_FAN1_SPEED, PSU_MFR_ID, PSU_MFR_MODEL, PSU_MFR_SERIAL, PSU_PRESENT, PSU_P_GOOD, }; static int two_complement_to_int(u16 data, u8 valid_bit, int mask) { u16 valid_data = data & mask; bool is_negative = valid_data >> (valid_bit - 1); return is_negative ? (-(((~valid_data) & mask) + 1)) : valid_data; } static ssize_t set_fan_duty_cycle(struct device *dev, struct device_attribute \ *dev_attr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct i2c_client *client = to_i2c_client(dev); struct cs6436_54p_psu_data *data = i2c_get_clientdata(client); int nr = (attr->index == PSU_FAN1_DUTY_CYCLE) ? 0 : 1; long speed; int error; if (data->valid != 1) { return -ENODEV; } error = kstrtol(buf, 10, &speed); if (error) return error; if (speed < 0 || speed > MAX_FAN_DUTY_CYCLE) return -EINVAL; mutex_lock(&data->update_lock); data->fan_duty_cycle[nr] = speed; cs6436_54p_psu_write_word(client, 0x3B + nr, data->fan_duty_cycle[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t for_linear_data(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); u16 value = 0; int exponent, mantissa; int multiplier = 1000; if (data->valid != 1) { return -ENODEV; } switch (attr->index) { case PSU_V_IN: value = data->v_in; break; case PSU_I_IN: value = data->i_in; break; case PSU_I_OUT: value = data->i_out; break; case PSU_P_IN: value = data->p_in; break; case PSU_P_OUT: value = data->p_out; break; case PSU_TEMP1_INPUT: value = data->temp_input[0]; break; case PSU_TEMP2_INPUT: value = data->temp_input[1]; break; case PSU_TEMP3_INPUT: value = data->temp_input[2]; break; case PSU_FAN1_DUTY_CYCLE: multiplier = 1; value = data->fan_duty_cycle[0]; break; case PSU_FAN1_SPEED: multiplier = 1; value = data->fan_speed[0]; break; default: break; } exponent = two_complement_to_int(value >> 11, 5, 0x1f); mantissa = two_complement_to_int(value & 0x7ff, 11, 0x7ff); return (exponent >= 0) ? sprintf(buf, "%d\n", \ (mantissa << exponent) * multiplier) : \ sprintf(buf, "%d\n", (mantissa * multiplier) / (1 << -exponent)); } static ssize_t for_fan_fault(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); if (data->valid != 1) { return -ENODEV; } u8 shift = (attr->index == PSU_FAN1_FAULT) ? 7 : 6; return sprintf(buf, "%d\n", data->fan_fault >> shift); } static ssize_t for_fan_warning(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); if (data->valid != 1) { return -ENODEV; } u8 shift = (attr->index == PSU_FAN1_WARN) ? 5 : 4; return sprintf(buf, "%d\n", data->fan_fault >> shift); } static ssize_t for_temp_fault(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); if (data->valid != 1) { return -ENODEV; } return sprintf(buf, "%d\n", data->temp_fault >> 7); } static ssize_t for_temp_warning(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); if (data->valid != 1) { return -ENODEV; } return sprintf(buf, "%d\n", data->temp_fault >> 6); } static ssize_t for_vout_data(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); int exponent, mantissa; int multiplier = 1000; if (data->valid != 1) { return -ENODEV; } exponent = two_complement_to_int(data->vout_mode, 5, 0x1f); mantissa = data->v_out; return (exponent > 0) ? sprintf(buf, "%d\n", \ (mantissa << exponent) * multiplier) : \ sprintf(buf, "%d\n", ((mantissa * multiplier) >> (-exponent))); } static ssize_t for_ascii(struct device *dev, struct device_attribute \ *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); u8 *ptr = NULL; if (data->valid != 1) { return -ENODEV; } switch (attr->index) { case PSU_MFR_ID: ptr = data->mfr_id + 1; break; case PSU_MFR_MODEL: ptr = data->mfr_model + 1; break; case PSU_MFR_SERIAL: ptr = data->mfr_serial + 1; break; default: return 0; } return sprintf(buf, "%s\n", ptr); } static ssize_t for_status(struct device *dev, struct device_attribute *dev_attr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(dev_attr); struct cs6436_54p_psu_data *data = cs6436_54p_psu_update_device(dev); u8 *ptr = NULL; u8 status = 0; if (attr->index == PSU_PRESENT) { status = data->psu_is_present; } else { /* PSU_POWER_GOOD */ if (!data->valid) { return -ENODEV; } status = data->psu_is_good; } return sprintf(buf, "%d\n", status); } static int cs6436_54p_psu_read_byte(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static int cs6436_54p_psu_read_word(struct i2c_client *client, u8 reg) { return i2c_smbus_read_word_data(client, reg); } static int cs6436_54p_psu_write_word(struct i2c_client *client, u8 reg, \ u16 value) { union i2c_smbus_data data; data.word = value; return i2c_smbus_xfer(client->adapter, client->addr, client->flags |= I2C_CLIENT_PEC, I2C_SMBUS_WRITE, reg, I2C_SMBUS_WORD_DATA, &data); } static int cs6436_54p_psu_read_block(struct i2c_client *client, u8 command, \ u8 *data, int data_len) { int result = i2c_smbus_read_i2c_block_data(client, command, data_len, data); if (unlikely(result < 0)) goto abort; if (unlikely(result != data_len)) { result = -EIO; goto abort; } result = 0; abort: return result; } struct reg_data_byte { u8 reg; u8 *value; }; struct reg_data_word { u8 reg; u16 *value; }; #define EEPROM_NAME "psu_eeprom" #define EEPROM_SIZE 256 /* 256 byte eeprom */ /* Platform dependent --- */ static ssize_t psu_eeprom_write(struct i2c_client *client, u8 command, const char *data, int data_len) { int status, retry = 3; if (data_len > I2C_SMBUS_BLOCK_MAX) { data_len = I2C_SMBUS_BLOCK_MAX; } while (retry) { status = i2c_smbus_write_i2c_block_data(client, command, data_len, data); if (unlikely(status < 0)) { msleep(100); retry--; continue; } break; } if (unlikely(status < 0)) { return status; } return data_len; } static ssize_t psu_page_write(struct i2c_client *client,const char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) { return count; } /* * Write data to chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ while (count) { ssize_t status; status = psu_eeprom_write(client, off, buf, count); if (status <= 0) { if (retval == 0) { retval = status; } break; } buf += status; off += status; count -= status; retval += status; } return retval; } static ssize_t psu_bin_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { int present; struct cs6436_54p_psu_data *data; ssize_t retval = 0; struct i2c_client *client; data = dev_get_drvdata(container_of(kobj, struct device, kobj)); client = to_i2c_client(container_of(kobj, struct device, kobj)); mutex_lock(&data->update_lock); retval = psu_page_write(client, buf, off, count); mutex_unlock(&data->update_lock); return retval; } static ssize_t psu_eeprom_read(struct i2c_client *client, u8 command, u8 *data, int data_len) { int status, retry = 3; if (data_len > I2C_SMBUS_BLOCK_MAX) { data_len = I2C_SMBUS_BLOCK_MAX; } while (retry) { status = i2c_smbus_read_i2c_block_data(client, command, data_len, data); if (unlikely(status < 0)) { msleep(100); retry--; continue; } break; } if (unlikely(status < 0)) { goto abort; } if (unlikely(status != data_len)) { status = -EIO; goto abort; } abort: return status; } static ssize_t psu_page_read(struct i2c_client *client,char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) { printk("Count = 0, return"); return count; } /* * Read data from chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ while (count) { ssize_t status; status = psu_eeprom_read(client, off, buf, count); if (status <= 0) { if (retval == 0) { retval = status; } break; } buf += status; off += status; count -= status; retval += status; } return retval; } static ssize_t psu_bin_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { int present; struct cs6436_54p_psu_data *data; struct i2c_client *client; ssize_t retval = 0; data = dev_get_drvdata(container_of(kobj, struct device, kobj)); client = to_i2c_client(container_of(kobj, struct device, kobj)); mutex_lock(&data->update_lock); retval = psu_page_read(client, buf, off, count); mutex_unlock(&data->update_lock); return retval; } static int psu_sysfs_eeprom_init(struct kobject *kobj, struct bin_attribute *eeprom) { int err; sysfs_bin_attr_init(eeprom); eeprom->attr.name = EEPROM_NAME; eeprom->attr.mode = S_IWUSR | S_IRUGO; eeprom->read = psu_bin_read; eeprom->write = psu_bin_write; eeprom->size = EEPROM_SIZE; /* Create eeprom file */ err = sysfs_create_bin_file(kobj, eeprom); if (err) { return err; } return 0; } static int psu_sysfs_eeprom_cleanup(struct kobject *kobj, struct bin_attribute *eeprom) { sysfs_remove_bin_file(kobj, eeprom); return 0; } static int psu_i2c_check_functionality(struct i2c_client *client) { return i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK); } static int psu_eeprom_probe(struct i2c_client *client, const struct i2c_device_id *dev_id) { int status; struct cs6436_54p_psu_data *data; if (!psu_i2c_check_functionality(client)) { status = -EIO; goto exit; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { status = -ENOMEM; goto exit; } i2c_set_clientdata(client, data); data->valid = 0; mutex_init(&data->update_lock); data->bin = kzalloc(sizeof(struct bin_attribute), GFP_KERNEL); if (!data->bin) { status = -ENOMEM; goto eeprom_bin_error; } /* init eeprom */ status = psu_sysfs_eeprom_init(&client->dev.kobj, data->bin); if (status) { status = -ENOMEM; goto sys_init_error; } dev_info(&client->dev, "psu eeprom '%s'\n", client->name); return 0; sys_init_error: kfree(data->bin); eeprom_bin_error: kfree(data); exit: return status; } static struct cs6436_54p_psu_data *cs6436_54p_psu_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct cs6436_54p_psu_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated)) { int i, status; u8 command; struct reg_data_byte regs_byte[] = { {0x20, &data->vout_mode}, {0x81, &data->fan_fault}, {0x7d, &data->temp_fault}, }; struct reg_data_word regs_word[] = { {0x88, &data->v_in}, {0x8b, &data->v_out}, {0x89, &data->i_in}, {0x8c, &data->i_out}, {0x96, &data->p_out}, {0x97, &data->p_in}, {0x8d, &(data->temp_input[0])}, {0x8e, &(data->temp_input[1])}, {0x3b, &(data->fan_duty_cycle[0])}, {0x90, &(data->fan_speed[0])}, }; data->valid = 1; dev_dbg(&client->dev, "start data update\n"); /* one milliseconds from now */ data->last_updated = jiffies + HZ / 1000; for (i = 0; i < ARRAY_SIZE(regs_byte); i++) { status = cs6436_54p_psu_read_byte(client, regs_byte[i].reg); if (status < 0) { dev_dbg(&client->dev, "reg %d, err %d\n", regs_byte[i].reg, status); *(regs_byte[i].value) = 0; data->valid = 0; } else { *(regs_byte[i].value) = status; } } for (i = 0; i < ARRAY_SIZE(regs_word); i++) { status = cs6436_54p_psu_read_word(client, regs_word[i].reg); if (status < 0) { dev_dbg(&client->dev, "reg %d, err %d\n", regs_word[i].reg, status); *(regs_word[i].value) = 0; data->valid = 0; } else { *(regs_word[i].value) = status; } } command = 0x99; /* PSU mfr_id */ status = cs6436_54p_psu_read_block(client, command, data->mfr_id, ARRAY_SIZE(data->mfr_id) - 1); data->mfr_id[ARRAY_SIZE(data->mfr_id) - 1] = '\0'; if (status < 0) { dev_dbg(&client->dev, "reg %d, err %d\n", command, status); memset(data->mfr_id, 0, sizeof(data->mfr_id)); data->valid = 0; } command = 0x9a; /* PSU mfr_model */ status = cs6436_54p_psu_read_block(client, command, data->mfr_model, ARRAY_SIZE(data->mfr_model) - 1); data->mfr_model[ARRAY_SIZE(data->mfr_model) - 1] = '\0'; if (status < 0) { dev_dbg(&client->dev, "reg %d, err %d\n", command, status); memset(data->mfr_model, 0, sizeof(data->mfr_id)); data->valid = 0; } command = 0x9e; /* PSU mfr_serial */ status = cs6436_54p_psu_read_block(client, command, data->mfr_serial, ARRAY_SIZE(data->mfr_serial) - 1); data->mfr_serial[ARRAY_SIZE(data->mfr_serial) - 1] = '\0'; if (status < 0) { dev_dbg(&client->dev, "reg %d, err %d\n", command, status); memset(data->mfr_serial, 0, sizeof(data->mfr_id)); data->valid = 0; } data->psu_is_present = strlen(data->mfr_id) > 1 ? 1:0; if(data->psu_is_present) { data->psu_is_good = ((data->fan_fault) || (data->temp_fault))? 0:1; } else { data->valid = 0; data->psu_is_good = 0; } } mutex_unlock(&data->update_lock); return data; } /* sysfs attributes for hwmon */ static SENSOR_DEVICE_ATTR(psu_v_in, S_IRUGO, for_linear_data, NULL, PSU_V_IN); static SENSOR_DEVICE_ATTR(psu_v_out, S_IRUGO, for_vout_data, NULL, PSU_V_OUT); static SENSOR_DEVICE_ATTR(psu_i_in, S_IRUGO, for_linear_data, NULL, PSU_I_IN); static SENSOR_DEVICE_ATTR(psu_i_out, S_IRUGO, for_linear_data, NULL, PSU_I_OUT); static SENSOR_DEVICE_ATTR(psu_p_in, S_IRUGO, for_linear_data, NULL, PSU_P_IN); static SENSOR_DEVICE_ATTR(psu_p_out, S_IRUGO, for_linear_data, NULL, PSU_P_OUT); static SENSOR_DEVICE_ATTR(psu_temp1_input, S_IRUGO, for_linear_data, NULL, PSU_TEMP1_INPUT); static SENSOR_DEVICE_ATTR(psu_temp2_input, S_IRUGO, for_linear_data, NULL, PSU_TEMP2_INPUT); static SENSOR_DEVICE_ATTR(psu_temp3_input, S_IRUGO, for_linear_data, NULL, PSU_TEMP3_INPUT); static SENSOR_DEVICE_ATTR(psu_temp_fault, S_IRUGO, for_temp_fault, NULL, PSU_TEMP_FAULT); static SENSOR_DEVICE_ATTR(psu_temp_warning, S_IRUGO, for_temp_warning, NULL, PSU_TEMP_WARN); static SENSOR_DEVICE_ATTR(psu_fan1_fault, S_IRUGO, for_fan_fault, NULL, PSU_FAN1_FAULT); static SENSOR_DEVICE_ATTR(psu_fan1_warning, S_IRUGO, for_fan_warning, NULL, PSU_FAN1_WARN); static SENSOR_DEVICE_ATTR(psu_fan1_duty_cycle_percentage, S_IWUSR | S_IRUGO, for_linear_data, set_fan_duty_cycle, PSU_FAN1_DUTY_CYCLE); static SENSOR_DEVICE_ATTR(psu_fan1_speed_rpm, S_IRUGO, for_linear_data, NULL, PSU_FAN1_SPEED); static SENSOR_DEVICE_ATTR(psu_mfr_id, S_IRUGO, for_ascii, NULL, PSU_MFR_ID); static SENSOR_DEVICE_ATTR(psu_mfr_model, S_IRUGO, for_ascii, NULL, PSU_MFR_MODEL); static SENSOR_DEVICE_ATTR(psu_mfr_serial, S_IRUGO, for_ascii, NULL, PSU_MFR_SERIAL); static SENSOR_DEVICE_ATTR(psu_present, S_IRUGO, for_status, NULL, PSU_PRESENT); static SENSOR_DEVICE_ATTR(psu_power_good, S_IRUGO, for_status, NULL, PSU_P_GOOD); static struct attribute *cs6436_54p_psu_attributes[] = { &sensor_dev_attr_psu_v_in.dev_attr.attr, &sensor_dev_attr_psu_v_out.dev_attr.attr, &sensor_dev_attr_psu_i_in.dev_attr.attr, &sensor_dev_attr_psu_i_out.dev_attr.attr, &sensor_dev_attr_psu_p_in.dev_attr.attr, &sensor_dev_attr_psu_p_out.dev_attr.attr, &sensor_dev_attr_psu_temp1_input.dev_attr.attr, &sensor_dev_attr_psu_temp2_input.dev_attr.attr, &sensor_dev_attr_psu_temp3_input.dev_attr.attr, &sensor_dev_attr_psu_temp_fault.dev_attr.attr, &sensor_dev_attr_psu_temp_warning.dev_attr.attr, &sensor_dev_attr_psu_fan1_fault.dev_attr.attr, &sensor_dev_attr_psu_fan1_warning.dev_attr.attr, &sensor_dev_attr_psu_fan1_duty_cycle_percentage.dev_attr.attr, &sensor_dev_attr_psu_fan1_speed_rpm.dev_attr.attr, &sensor_dev_attr_psu_mfr_id.dev_attr.attr, &sensor_dev_attr_psu_mfr_model.dev_attr.attr, &sensor_dev_attr_psu_mfr_serial.dev_attr.attr, &sensor_dev_attr_psu_present.dev_attr.attr, &sensor_dev_attr_psu_power_good.dev_attr.attr, NULL }; static const struct attribute_group cs6436_54p_psu_group = { .attrs = cs6436_54p_psu_attributes, }; static int psu_register_probe(struct i2c_client *client, const struct i2c_device_id *id) { int status; struct cs6436_54p_psu_data *data; if (!psu_i2c_check_functionality(client)) { status = -EIO; goto exit; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { status = -ENOMEM; goto exit; } i2c_set_clientdata(client, data); data->valid = 0; mutex_init(&data->update_lock); /* Register sysfs hooks */ status = sysfs_create_group(&client->dev.kobj, &cs6436_54p_psu_group); if (status) goto exit_sysfs_create_group; cs6436_54p_sysfs_add_client(client); data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { status = PTR_ERR(data->hwmon_dev); goto exit_hwmon_device_register; } /* init eeprom */ return 0; exit_hwmon_device_register: sysfs_remove_group(&client->dev.kobj, &cs6436_54p_psu_group); exit_sysfs_create_group: kfree(data); exit: return status; } static int cs6436_54p_psu_probe(struct i2c_client *client, const struct i2c_device_id *id) { int status; if((client->addr == 0x52) ||(client->addr == 0x53)) { status = psu_eeprom_probe(client, id); } else if((client->addr == 0x5a) ||(client->addr == 0x5b)) { status = psu_register_probe(client, id); } return status; } static int cs6436_54p_psu_remove(struct i2c_client *client) { cs6436_54p_sysfs_remove_client(client); if((client->addr == 0x52) ||(client->addr == 0x53)) { struct cs6436_54p_psu_data *data; data = i2c_get_clientdata(client); psu_sysfs_eeprom_cleanup(&client->dev.kobj,data->bin); kfree(data); } else if((client->addr == 0x5a) ||(client->addr == 0x5b)) { struct cs6436_54p_psu_data *data; data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &cs6436_54p_psu_group); kfree(data); } return 0; } enum psu_index { cs6436_54p_psu1, cs6436_54p_psu2 }; static const struct i2c_device_id cs6436_54p_psu_id[] = { { "cs6436_54p_psu1", cs6436_54p_psu1 }, { "cs6436_54p_psu2", cs6436_54p_psu2 }, {} }; MODULE_DEVICE_TABLE(i2c, cs6436_54p_psu_id); static struct i2c_driver cs6436_54p_psu_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "cs6436_54p_psu", }, .probe = cs6436_54p_psu_probe, .remove = cs6436_54p_psu_remove, .id_table = cs6436_54p_psu_id, .address_list = normal_i2c, }; module_i2c_driver(cs6436_54p_psu_driver); MODULE_AUTHOR("Zhang Peng "); MODULE_DESCRIPTION("cs6436_54p_psu driver"); MODULE_LICENSE("GPL");