/* * at24.c - handle most I2C EEPROMs * * Copyright (C) 2005-2007 David Brownell * Copyright (C) 2008 Wolfram Sang, Pengutronix * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. * Differences between different vendor product lines (like Atmel AT24C or * MicroChip 24LC, etc) won't much matter for typical read/write access. * There are also I2C RAM chips, likewise interchangeable. One example * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). * * However, misconfiguration can lose data. "Set 16-bit memory address" * to a part with 8-bit addressing will overwrite data. Writing with too * big a page size also loses data. And it's not safe to assume that the * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC * uses 0x51, for just one example. * * Accordingly, explicit board-specific configuration data should be used * in almost all cases. (One partial exception is an SMBus used to access * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) * * So this driver uses "new style" I2C driver binding, expecting to be * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or * similar kernel-resident tables; or, configuration data coming from * a bootloader. * * Other than binding model, current differences from "eeprom" driver are * that this one handles write access and isn't restricted to 24c02 devices. * It also handles larger devices (32 kbit and up) with two-byte addresses, * which won't work on pure SMBus systems. */ struct at24_data { struct at24_platform_data chip; struct memory_accessor macc; int use_smbus; /* * Lock protects against activities from other Linux tasks, * but not from changes by other I2C masters. */ struct mutex lock; struct bin_attribute bin; u8 *writebuf; unsigned write_max; unsigned num_addresses; /* * Some chips tie up multiple I2C addresses; dummy devices reserve * them for us, and we'll use them with SMBus calls. */ struct i2c_client *client[]; }; /* * This parameter is to help this driver avoid blocking other drivers out * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C * clock, one 256 byte read takes about 1/43 second which is excessive; * but the 1/170 second it takes at 400 kHz may be quite reasonable; and * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. * * This value is forced to be a power of two so that writes align on pages. */ static unsigned io_limit = 128; module_param(io_limit, uint, 0); MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)"); /* * Specs often allow 5 msec for a page write, sometimes 20 msec; * it's important to recover from write timeouts. */ static unsigned write_timeout = 25; module_param(write_timeout, uint, 0); MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)"); #define AT24_SIZE_BYTELEN 5 #define AT24_SIZE_FLAGS 8 #define AT24_BITMASK(x) (BIT(x) - 1) /* create non-zero magic value for given eeprom parameters */ #define AT24_DEVICE_MAGIC(_len, _flags) \ ((1 << AT24_SIZE_FLAGS | (_flags)) \ << AT24_SIZE_BYTELEN | ilog2(_len)) static const struct i2c_device_id at24_ctc_ids[] = { { "24c64-ctc", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16 | AT24_FLAG_READONLY | AT24_FLAG_IRUGO) }, { /* END OF LIST */ } }; MODULE_DEVICE_TABLE(i2c, at24_ctc_ids); /*-------------------------------------------------------------------------*/ /* * This routine supports chips which consume multiple I2C addresses. It * computes the addressing information to be used for a given r/w request. * Assumes that sanity checks for offset happened at sysfs-layer. */ static struct i2c_client *at24_translate_offset(struct at24_data *at24, unsigned *offset) { unsigned i; if (at24->chip.flags & AT24_FLAG_ADDR16) { i = *offset >> 16; *offset &= 0xffff; } else { i = *offset >> 8; *offset &= 0xff; } return at24->client[i]; } static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, unsigned offset, size_t count) { struct i2c_msg msg[2]; struct i2c_client *client; unsigned long timeout, read_time; int status; memset(msg, 0, sizeof(msg)); /* * REVISIT some multi-address chips don't rollover page reads to * the next slave address, so we may need to truncate the count. * Those chips might need another quirk flag. * * If the real hardware used four adjacent 24c02 chips and that * were misconfigured as one 24c08, that would be a similar effect: * one "eeprom" file not four, but larger reads would fail when * they crossed certain pages. */ /* * Slave address and byte offset derive from the offset. Always * set the byte address; on a multi-master board, another master * may have changed the chip's "current" address pointer. */ client = at24_translate_offset(at24, &offset); if (count > io_limit) count = io_limit; count = 1; /* * Reads fail if the previous write didn't complete yet. We may * loop a few times until this one succeeds, waiting at least * long enough for one entire page write to work. */ timeout = jiffies + msecs_to_jiffies(write_timeout); do { read_time = jiffies; status = i2c_smbus_write_byte_data(client, (offset >> 8) & 0x0ff, offset & 0x0ff ); status = i2c_smbus_read_byte(client); if (status >= 0) { buf[0] = status; status = count; } dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", count, offset, status, jiffies); if (status == count) return count; /* REVISIT: at HZ=100, this is sloooow */ msleep(1); } while (time_before(read_time, timeout)); return -ETIMEDOUT; } static ssize_t at24_read(struct at24_data *at24, char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) return count; memset(buf, 0, count); /* * Read data from chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); while (count) { ssize_t status; status = at24_eeprom_read(at24, buf, off, count); if (status <= 0) { if (retval == 0) retval = status; break; } buf += status; off += status; count -= status; retval += status; } //printk(KERN_ALERT "at24_read buf = %s, retval = %zu\n", buf, retval); mutex_unlock(&at24->lock); return retval; } static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct at24_data *at24; at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); return at24_read(at24, buf, off, count); } /* * Note that if the hardware write-protect pin is pulled high, the whole * chip is normally write protected. But there are plenty of product * variants here, including OTP fuses and partial chip protect. * * We only use page mode writes; the alternative is sloooow. This routine * writes at most one page. */ static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf, unsigned offset, size_t count) { struct i2c_client *client; ssize_t status; unsigned long timeout, write_time; unsigned next_page; /* Get corresponding I2C address and adjust offset */ client = at24_translate_offset(at24, &offset); /* write_max is at most a page */ if (count > at24->write_max) count = at24->write_max; /* Never roll over backwards, to the start of this page */ next_page = roundup(offset + 1, at24->chip.page_size); if (offset + count > next_page) count = next_page - offset; /* * Writes fail if the previous one didn't complete yet. We may * loop a few times until this one succeeds, waiting at least * long enough for one entire page write to work. */ timeout = jiffies + msecs_to_jiffies(write_timeout); do { write_time = jiffies; status = i2c_smbus_write_word_data(client, (offset >> 8) & 0x0ff, (offset & 0xFF) | buf[0]); if (status == 0) status = count; dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n", count, offset, status, jiffies); if (status == count) return count; /* REVISIT: at HZ=100, this is sloooow */ msleep(1); } while (time_before(write_time, timeout)); return -ETIMEDOUT; } static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off, size_t count) { ssize_t retval = 0; if (unlikely(!count)) return count; /* * Write data to chip, protecting against concurrent updates * from this host, but not from other I2C masters. */ mutex_lock(&at24->lock); while (count) { ssize_t status; status = at24_eeprom_write(at24, buf, off, 1); /* only one-byte to write; TODO page wirte */ if (status <= 0) { if (retval == 0) retval = status; break; } buf += status; off += status; count -= status; retval += status; } mutex_unlock(&at24->lock); return retval; } static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct at24_data *at24; if (unlikely(off >= attr->size)) return -EFBIG; at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); return at24_write(at24, buf, off, count); } /*-------------------------------------------------------------------------*/ /* * This lets other kernel code access the eeprom data. For example, it * might hold a board's Ethernet address, or board-specific calibration * data generated on the manufacturing floor. */ static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf, off_t offset, size_t count) { struct at24_data *at24 = container_of(macc, struct at24_data, macc); return at24_read(at24, buf, offset, count); } static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf, off_t offset, size_t count) { struct at24_data *at24 = container_of(macc, struct at24_data, macc); return at24_write(at24, buf, offset, count); } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_OF static void at24_get_ofdata(struct i2c_client *client, struct at24_platform_data *chip) { const __be32 *val; struct device_node *node = client->dev.of_node; if (node) { if (of_get_property(node, "read-only", NULL)) chip->flags |= AT24_FLAG_READONLY; val = of_get_property(node, "pagesize", NULL); if (val) chip->page_size = be32_to_cpup(val); } } #else static void at24_get_ofdata(struct i2c_client *client, struct at24_platform_data *chip) { } #endif /* CONFIG_OF */ static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct at24_platform_data chip; bool writable; int use_smbus = 0; struct at24_data *at24; int err; unsigned i, num_addresses; kernel_ulong_t magic; if (client->dev.platform_data) { chip = *(struct at24_platform_data *)client->dev.platform_data; } else { if (!id->driver_data) return -ENODEV; magic = id->driver_data; chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN)); magic >>= AT24_SIZE_BYTELEN; chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS); /* * This is slow, but we can't know all eeproms, so we better * play safe. Specifying custom eeprom-types via platform_data * is recommended anyhow. */ chip.page_size = 1; /* update chipdata if OF is present */ at24_get_ofdata(client, &chip); printk(KERN_ALERT "at24_probe chip.byte_len = 0x%x\n", chip.byte_len); printk(KERN_ALERT "at24_probe chip.flags = 0x%x\n", chip.flags); printk(KERN_ALERT "at24_probe chip.magic = 0x%lx\n", id->driver_data); chip.setup = NULL; chip.context = NULL; } if (!is_power_of_2(chip.byte_len)) dev_warn(&client->dev, "byte_len looks suspicious (no power of 2)!\n"); if (!chip.page_size) { dev_err(&client->dev, "page_size must not be 0!\n"); return -EINVAL; } if (!is_power_of_2(chip.page_size)) dev_warn(&client->dev, "page_size looks suspicious (no power of 2)!\n"); /* Use I2C operations unless we're stuck with SMBus extensions. */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { use_smbus = I2C_SMBUS_I2C_BLOCK_DATA; } else if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA)) { use_smbus = I2C_SMBUS_WORD_DATA; } else if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA)) { use_smbus = I2C_SMBUS_BYTE_DATA; } else { return -EPFNOSUPPORT; } use_smbus = I2C_SMBUS_BYTE_DATA; printk(KERN_ALERT "at24_probe use_smbus --> %d\n", use_smbus); } if (chip.flags & AT24_FLAG_TAKE8ADDR) num_addresses = 8; else num_addresses = DIV_ROUND_UP(chip.byte_len, (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256); at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) + num_addresses * sizeof(struct i2c_client *), GFP_KERNEL); if (!at24) return -ENOMEM; mutex_init(&at24->lock); at24->use_smbus = use_smbus; at24->chip = chip; at24->num_addresses = num_addresses; /* * Export the EEPROM bytes through sysfs, since that's convenient. * By default, only root should see the data (maybe passwords etc) */ sysfs_bin_attr_init(&at24->bin); at24->bin.attr.name = "eeprom"; at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR; at24->bin.read = at24_bin_read; at24->bin.size = chip.byte_len; at24->macc.read = at24_macc_read; writable = !(chip.flags & AT24_FLAG_READONLY); if (writable) { if (!use_smbus || i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) { unsigned write_max = chip.page_size; at24->macc.write = at24_macc_write; at24->bin.write = at24_bin_write; at24->bin.attr.mode |= S_IWUSR; if (write_max > io_limit) write_max = io_limit; if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX) write_max = I2C_SMBUS_BLOCK_MAX; at24->write_max = write_max; /* buffer (data + address at the beginning) */ at24->writebuf = devm_kzalloc(&client->dev, write_max + 2, GFP_KERNEL); if (!at24->writebuf) return -ENOMEM; } else { dev_warn(&client->dev, "cannot write due to controller restrictions."); } } at24->client[0] = client; /* use dummy devices for multiple-address chips */ for (i = 1; i < num_addresses; i++) { at24->client[i] = i2c_new_dummy(client->adapter, client->addr + i); if (!at24->client[i]) { dev_err(&client->dev, "address 0x%02x unavailable\n", client->addr + i); err = -EADDRINUSE; goto err_clients; } } err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin); if (err) goto err_clients; i2c_set_clientdata(client, at24); dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", at24->bin.size, client->name, writable ? "writable" : "read-only", at24->write_max); if (use_smbus == I2C_SMBUS_WORD_DATA || use_smbus == I2C_SMBUS_BYTE_DATA) { dev_notice(&client->dev, "Falling back to %s reads, " "performance will suffer\n", use_smbus == I2C_SMBUS_WORD_DATA ? "word" : "byte"); } /* export data to kernel code */ if (chip.setup) chip.setup(&at24->macc, chip.context); return 0; err_clients: for (i = 1; i < num_addresses; i++) if (at24->client[i]) i2c_unregister_device(at24->client[i]); return err; } static int at24_remove(struct i2c_client *client) { struct at24_data *at24; int i; at24 = i2c_get_clientdata(client); sysfs_remove_bin_file(&client->dev.kobj, &at24->bin); for (i = 1; i < at24->num_addresses; i++) i2c_unregister_device(at24->client[i]); return 0; } /*-------------------------------------------------------------------------*/ static struct i2c_board_info i2c_devs = { I2C_BOARD_INFO("24c64-ctc", 0x57), }; static struct i2c_adapter *adapter = NULL; static struct i2c_client *client = NULL; static int ctc_at24c64_init(void) { printk(KERN_ALERT "ctc_at24c64_init\n"); adapter = i2c_get_adapter(0); if(adapter == NULL){ printk(KERN_ALERT "i2c_get_adapter == NULL\n"); return -1; } client = i2c_new_device(adapter, &i2c_devs); if(client == NULL){ printk(KERN_ALERT "i2c_new_device == NULL\n"); i2c_put_adapter(adapter); adapter = NULL; return -1; } return 0; } static void ctc_at24c64_exit(void) { printk(KERN_ALERT "ctc_at24c64_exit\n"); if(client){ i2c_unregister_device(client); } if(adapter){ i2c_put_adapter(adapter); } } static struct i2c_driver at24_ctc_driver = { .driver = { .name = "at24-ctc", .owner = THIS_MODULE, }, .probe = at24_probe, .remove = at24_remove, .id_table = at24_ctc_ids, }; static int __init at24_ctc_init(void) { if (!io_limit) { pr_err("at24_ctc: io_limit must not be 0!\n"); return -EINVAL; } io_limit = rounddown_pow_of_two(io_limit); ctc_at24c64_init(); return i2c_add_driver(&at24_ctc_driver); } module_init(at24_ctc_init); static void __exit at24_ctc_exit(void) { ctc_at24c64_exit(); i2c_del_driver(&at24_ctc_driver); } module_exit(at24_ctc_exit); MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); MODULE_AUTHOR("David Brownell and Wolfram Sang"); MODULE_LICENSE("GPL"); /* XXX */