Why I did it
To ensure, that after a BGP startup, dualtor T0 receives BGP updates before sending out BGP updates.
Please refer to sonic-net/SONiC#1161 for more details.
How I did it
add coalesce-time 10000 to the frr bgp startup config.
Signed-off-by: Longxiang Lyu <lolv@microsoft.com>
Signed-off-by: Longxiang Lyu <lolv@microsoft.com>
What I did:
Updated Jinja Template to enable BGP Graceful Restart based on device role. By default it will be enable only if the device role type is TorRouter.
Why I did:-
By default FRR is configured in Graceful Helper mode. Graceful Restart is needed on T0/TorRouter only since the device can go for warm-reboot. For T1/LeafRouter it need to be in Helper mode only
Updated BGP Template for the case:
1. For Packet Chassis do not advertise Loopback4096 address into BGP as there is Static Route for same.
Having this route in BGP causes two level of recursion in Zebra and cause assert in Zebra
when there are many nexthop involved
2. Advertise only P2P Connected IP's into BGP (External Peers). For Packet chassis we have backend IP Interface subnet and if
they get advertised into BGP then it also causes recursion
1. Changes for Generation LC-Graph for packet-based chassis.
2. Added Support Ipv6 Peering on Loopback4096 for voq also
3. Updated asic topology yml files to be offset of slot
4. Made slot_num to take string slot<number> instead of number
5. Consolidated template_dpg_voq_asic.j2 into dpg_asic.j2
6. Remove Loopback4096 from asic topology and parse as dut invertory for
multi-asic
7. Updated topo_facts parsing for asic topology_
8. Internal BGP Session rename from <VoqChassisInternal> to <ChassisInternal> and take switch_type as value.
Signed-off-by: Abhishek Dosi <abdosi@microsoft.com>
For multiasic, the back end asics use ip addresss of Loopback4096 for BGP router id. In VOQ multi-asic chassis there are no back end asics. All the asics are front end and the iBGP connections are established via Ethernet-IB of asics. Since these asics are not designated as BackEnd, the ip address of interface Loopback0 is used as BGP router id. Since the ip address of Loopback0 is same for all the asics in the line card, same router id is used for voq iBGP configurations and hence the iBGP connections are not established. Changes are done to fix this
Why I did it
There are scenarios that End-of-RIB comes from a part of the peers arrives after reconciliation. In such scenarios, if the route selection deferral timer has the default value of 360 seconds, FRR would not set up routes and all routes would be removed after reconciliation. This PR reduces the route selection deferral timer so that at least routes to parts of the peers get restored at the point of reconciliation.
Fix#7488
How I did it
Reduce route selection deferral timer for bgp graceful restart to 15 seconds.
Signed-off-by: Arvindsrinivasan Lakshmi Narasimhan <arlakshm@microsoft.com>
In the multi asic platforms all the ASIC are advertising the same IPv6 /64 network from Loopback4096.
Therefore, the IPv6 loopback address of backend asic is not learnt on the frontend asic.
Change the bgpd.conf.main.conf.j2 template file to advertise the Loopback4096 ipv6 address as /128
1. Made the command next-hop-self force only applicable on back-end asic bgp. This is done so that BGPL iBGP session running on backend can send e-BGP learn nexthop. Back end asic FRR is able to recursively resolve the eBGP nexthop in its routing table since it knows about all the connected routes advertise from front end asic.
2. Made all front-end asic bgp use global loopback ip (Loopback0) as router id and back end asic bgp use Loopbacl4096 as ruter-id and originator id for Route-Reflector. This is done so that routes learnt by external peer do not see Loopback4096 as router id in show ip bgp <route-prerfix> output.
3. To handle above change need to pass Loopback4096 from BGP manager for jinja2 template generation. This was missing and this change/fix is needed for this also https://github.com/Azure/sonic-buildimage/blob/master/dockers/docker-fpm-frr/frr/bgpd/templates/dynamic/instance.conf.j2#L27
4. Enhancement to add mult_asic specific bgpd template generation unit test cases.
Resubmitting the changes for (#4825) with fixes for sonic-bgpcdgd test failures
Signed-off-by: Arvindsrinivasan Lakshmi Narasimhan <arlakshm@microsoft.com>
* Loopback IP changes for multi ASIC devices
multi ASIC will have 2 Loopback Interfaces
- Loopback0 has globally unique IP address, which is advertised by the multi ASIC device to its peers.
This way all the external devices will see this device as a single device.
- Loopback4096 is assigned an IP address which has a scope is within the device. Each ASIC has a different ip address for Loopback4096. This ip address will be used as Router-Id by the bgp instance on multi ASIC devices.
This PR implements this change for multi ASIC devices
Signed-off-by: Arvindsrinivasan Lakshmi Narasimhan <arlakshm@microsoft.com>
- change the references to 'type' field to 'sub_role'
- change the references to 'InternalFrontend' and 'InternalBackend' to 'FrontEnd' and 'BackEnd' respectively
- add a statement to reflect route-reflector for backend asics
- add a change to set "next-hop-self force" configuration for internal BGP session in multi asic platform.
Signed-off-by: Arvindsrinivasan Lakshmi Narasimhan <arlakshm@microsoft.com>
The one big bgp configuration template was splitted into chunks.
Currently we have three types of bgp neighbor peers:
general bgp peers. They are represented by CONFIG_DB::BGP_NEIGHBOR table entries
dynamic bgp peers. They are represented by CONFIG_DB::BGP_PEER_RANGE table entries
monitors bgp peers. They are represented by CONFIG_DB::BGP_MONITORS table entries
This PR introduces three templates for each peer type:
bgp policies: represent policieas that will be applied to the bgp peer-group (ip prefix-lists, route-maps, etc)
bgp peer-group: represent bgp peer group which has common configuration for the bgp peer type and uses bgp routing policy from the previous item
bgp peer-group instance: represent bgp configuration, which will be used to instatiate a bgp peer-group for the bgp peer-type. Usually this one is simple, consist of the referral to the bgp peer-group, bgp peer description and bgp peer ip address.
This PR redefined constant.yml file. Now this file has a setting for to use or don't use bgp_neighbor metadata. This file has more parameters for now, which are not used. They will be used in the next iteration of bgpcfgd.
Currently all tests have been disabled. I'm going to create next PR with the tests right after this PR is merged.
I'm going to introduce better bgpcfgd in a short time. It will include support of dynamic changes for the templates.
FIX:: #4231