sonic-buildimage/platform/broadcom/sonic-platform-modules-inventec/d6556/modules/inv_psoc.c

995 lines
32 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#define SWITCH_TEMPERATURE_SOCK "/proc/switch/temp"
#define PSOC_POLLING_PERIOD 1000
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#define IPMI_MAX_INTF (4)
#define NETFN_OEM 0x30
#define CMD_GETDATA 0x31
#define CMD_SETDATA 0x32
#define FAN_NUM 4
#define PSU_NUM 2
#define FAN_CLEI_SUPPORT 1
#define PSU_CLEI_SUPPORT 0
#define PSU1 0x5800
#define PSU2 0x5900
#define BMC_PMBusNumber 3
#define PMBus_Vendor 0x99
#define PMBus_Serial 0x9E
#define PMBus_Temp2 0x8E
#define PMBus_Version 0x9B
#define MaxLeng_Result 0x40
#define BMC_FanCLEIBusNumber 9
#define DEVICE_CLEI_ADDR 0x52,0x53,0x54,0x55,0x56,0x50,0x51
#define MAX_IPMI_RECV_LENGTH 0xff
static char CLEI_ADDR[]={DEVICE_CLEI_ADDR};
struct task_struct *kthread_auto_update;
static long pmbus_reg2data_linear(int data, int linear16);
struct ipmi_result{
char result[MAX_IPMI_RECV_LENGTH];
int result_length;
};
DEFINE_MUTEX(ipmi_mutex);
DEFINE_MUTEX(ipmi2_mutex);
static struct ipmi_result ipmiresult;
static struct device *hwmon_dev;
static struct kobject *device_kobj;
static ipmi_user_t ipmi_mh_user = NULL;
static void msg_handler(struct ipmi_recv_msg *msg,void* handler_data);
static struct ipmi_user_hndl ipmi_hndlrs = { .ipmi_recv_hndl = msg_handler,};
static atomic_t dummy_count = ATOMIC_INIT(0);
static void dummy_smi_free(struct ipmi_smi_msg *msg)
{
atomic_dec(&dummy_count);
}
static void dummy_recv_free(struct ipmi_recv_msg *msg)
{
atomic_dec(&dummy_count);
}
static struct ipmi_smi_msg halt_smi_msg = {
.done = dummy_smi_free
};
static struct ipmi_recv_msg halt_recv_msg = {
.done = dummy_recv_free
};
struct __attribute__ ((__packed__)) psoc_psu_layout {
u16 psu1_iin;
u16 psu2_iin;
u16 psu1_iout;
u16 psu2_iout;
u16 psu1_pin;
u16 psu2_pin;
u16 psu1_pout;
u16 psu2_pout;
u16 psu1_vin;
u16 psu2_vin;
u16 psu1_vout;
u16 psu2_vout;
};
struct __attribute__ ((__packed__)) clei {
u8 issue_number[3];
u8 abbreviation_number[9];
u8 fc_number[10];
u8 clei_code[10];
u8 product_year_and_month[5];
u8 label_location_code[2];
u8 serial_number[5];
u8 pcb_revision[5];
u8 vendor_name[10];
u8 reserved[5];
};
struct __attribute__ ((__packed__)) psoc_layout {
u8 ctl; //offset: 0
u16 switch_temp; //offset: 1
// BYTE[03:20] - voltage
u16 voltage[15]; //offset: 0x03-0x20
// BYTE[21:27] - ExtFan
u8 led_ctl2; //offset: 21
u8 ext_pwm; //offset: 22
u16 ext_rpm[2]; //offset: 23
u8 gpi_fan2; //offset: 27
//gpo
u8 led_ctl; //offset: 28
u8 gpio; //offset: 29
//pwm duty
u8 pwm[4]; //offset: 2a
u8 pwm_psu[2]; //offset: 2e
//fan rpm
u16 fan[4*2]; //offset: 30
u8 reserve1[4]; //offset: 40
//gpi
u8 gpi_fan; //offset: 44
//psu state
u8 psu_state; //offset: 45
//temperature
u16 temp[5]; //offset: 46
u16 temp_psu[2]; //offset: 50
//version
u8 version[2]; //offset: 54
u8 reserve2[4]; //offset: 56
struct psoc_psu_layout psu_info; //offset: 5a
};
/* definition */
#define PSOC_OFF(m) offsetof(struct psoc_layout, m)
#define PSOC_PSU_OFF(m) offsetof(struct psoc_psu_layout, m)
#define SWITCH_TMP_OFFSET PSOC_OFF(switch_temp)
#define PWM_OFFSET PSOC_OFF(pwm)
#define THERMAL_OFFSET PSOC_OFF(temp)
#define RPM_OFFSET PSOC_OFF(fan)
#define DIAG_FLAG_OFFSET PSOC_OFF(ctl)
#define FAN_LED_OFFSET PSOC_OFF(led_ctl)
#define FAN_GPI_OFFSET PSOC_OFF(gpi_fan)
#define PSOC_PSU_OFFSET PSOC_OFF(psu_state)
#define VERSION_OFFSET PSOC_OFF(version)
#define PSU_INFO_OFFSET PSOC_OFF(psu_info)
#define PWM2_OFFSET PSOC_OFF(ext_pwm)
#define RPM2_OFFSET PSOC_OFF(ext_rpm)
#define FAN_LED2_OFFSET PSOC_OFF(led_ctl2)
#define FAN_GPI2_OFFSET PSOC_OFF(gpi_fan2)
#define CLEI_OFF(m) offsetof(struct clei, m)
#define FAN1_CLEI_INDEX 0
#define FAN2_CLEI_INDEX 1
#define FAN3_CLEI_INDEX 2
#define FAN4_CLEI_INDEX 3
#define FAN5_CLEI_INDEX 4
#define PSU1_CLEI_INDEX 5
#define PSU2_CLEI_INDEX 6
static void msg_handler(struct ipmi_recv_msg *recv_msg,void* handler_data)
{
struct ipmi_result *msg_result = recv_msg->user_msg_data;
if(recv_msg->msg.data[0]==0 && recv_msg->msg.data_len>0) {
msg_result->result_length=recv_msg->msg.data_len-1;
memcpy(msg_result->result, &recv_msg->msg.data[1], recv_msg->msg.data_len-1);
}
ipmi_free_recv_msg(recv_msg);
mutex_unlock(&ipmi_mutex);
return;
}
int start_ipmi_command(char NetFn, char cmd,char *data,int data_length, char* result, int* result_length)
{
int rv=0,i;
int timeout;
//wait previous command finish at least 50msec
timeout=50;
while((mutex_is_locked(&ipmi_mutex) == 1 || (mutex_is_locked(&ipmi2_mutex) == 1)) && (--timeout)>0) { usleep_range(1000,1010); }
if(timeout==0) { return -1; }
mutex_lock(&ipmi_mutex);
mutex_lock(&ipmi2_mutex);
if(ipmi_mh_user == NULL) {
for (i=0,rv=1; i<IPMI_MAX_INTF && rv; i++) {
rv = ipmi_create_user(i, &ipmi_hndlrs, NULL, &ipmi_mh_user);
}
}
if (rv < 0) {
mutex_unlock(&ipmi_mutex);
mutex_unlock(&ipmi2_mutex);
return rv;
}
else {
struct ipmi_system_interface_addr addr;
struct kernel_ipmi_msg msg;
uint8_t msg_data[data_length];
memcpy(msg_data,data,data_length);
addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
addr.channel = IPMI_BMC_CHANNEL;
addr.lun = 0;
msg.netfn = NetFn;
msg.cmd = cmd;
msg.data = msg_data;
msg.data_len = data_length;
rv = ipmi_request_supply_msgs(ipmi_mh_user, (struct ipmi_addr*)&addr, 0,&msg, &ipmiresult, &halt_smi_msg, &halt_recv_msg, 0);
if (rv) {
mutex_unlock(&ipmi_mutex);
mutex_unlock(&ipmi2_mutex);
return -6;
}
//skip command if 1sec no response from remote
timeout=1000;
while(mutex_is_locked(&ipmi_mutex) == 1 && (--timeout)>0) { usleep_range(1000,1100);}
if(timeout==0) {
mutex_unlock(&ipmi2_mutex);
return -1;
}
else {
*result_length=ipmiresult.result_length;
memcpy(result,ipmiresult.result,*result_length);
mutex_unlock(&ipmi2_mutex);
return 0;
}
}
return 0;
}
EXPORT_SYMBOL(start_ipmi_command);
static ssize_t psoc_ipmi_read(u8 *buf, u8 offset, size_t count)
{
uint8_t data[2];
int result_len=0;
int rv;
data[0] = offset;
data[1] = count;
rv=start_ipmi_command(NETFN_OEM, CMD_GETDATA,data,2, buf, &result_len);
return result_len;
}
static ssize_t psoc_ipmi_write(char *buf, unsigned offset, size_t count)
{
uint8_t data[count+1],result[1];
int result_len;
data[0] = offset;
memcpy(&data[1],buf,count);
start_ipmi_command(NETFN_OEM, CMD_SETDATA,data,count+1, result, &result_len);
return count;
}
static u16 psoc_read16(u8 offset)
{
u16 value = 0;
u8 buf[]={0,0};
if(psoc_ipmi_read(buf, offset, 2) == 2)
value = (buf[0]<<8 | buf[1]<<0);
return value;
}
static u8 psoc_read8(u8 offset)
{
u8 value = 0;
u8 buf = 0;
if(psoc_ipmi_read(&buf, offset, 1) == 1)
value = buf;
return value;
}
/*
CPLD report the PSU0 status
000 = PSU normal operation
100 = PSU fault
010 = PSU unpowered
111 = PSU not installed
7 6 | 5 4 3 | 2 1 0
----------------------
| psu1 | psu0
*/
static char* psu_str[] = {
"normal", //000
"NA", //001
"unpowered", //010
"NA", //011
"fault", //100
"NA", //101
"NA", //110
"not installed", //111
};
static ssize_t show_psu_st(struct device *dev, struct device_attribute *da,
char *buf)
{
u32 status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 byte=0;
int shift = (attr->index == 0)?3:0;
status = psoc_ipmi_read(&byte, PSOC_PSU_OFFSET, 1);
byte = (byte >> shift) & 0x7;
status = sprintf (buf, "%d : %s\n", byte, psu_str[byte]);
return strlen(buf);
}
static ssize_t show_ipmi_pmbus(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
uint8_t data[4],result[MaxLeng_Result];
int result_len=0;
data[0] = BMC_PMBusNumber;
data[1] = (attr->index & 0xFF00 ) >>7;
data[3] = attr->index & 0xff;
if(data[3]==PMBus_Temp2)
{data[2]=2;}
else
{data[2]=MaxLeng_Result;}
if(start_ipmi_command(0x06, 0x52,data,4, result, &result_len)==0)
{
if(data[3]==PMBus_Temp2)
{
return sprintf(buf, "%ld \n", pmbus_reg2data_linear(result[0] | (result[1]<<8), 0 ));
}
result[result[0]+1]='\0';
return sprintf(buf, "%s\n",&result[1] );
}
else
{
return 0;
}
}
static ssize_t show_clei(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 device_index = attr->index & 0xFF;
uint8_t data[5],result[MaxLeng_Result];
int result_len=0;
data[0] = (device_index<=FAN5_CLEI_INDEX) ? BMC_FanCLEIBusNumber:BMC_PMBusNumber;
data[1] = CLEI_ADDR[device_index]<<1;
data[2] = sizeof(struct clei);
data[3] = (device_index<=FAN5_CLEI_INDEX) ? 0x00 : 0x01; //PSU CLEI will start from 0x0100
data[4] = 0;
if(start_ipmi_command(0x06, 0x52,data,5, result, &result_len)==0)
{
if(result_len < sizeof(struct clei)) memset(result, 0, sizeof(struct clei));
sprintf (buf, "Issue Number: %.3s\n", &result[CLEI_OFF(issue_number)]);
sprintf (buf, "%sAbbreviation Number: %.9s\n", buf, &result[CLEI_OFF(abbreviation_number)]);
sprintf (buf, "%sFC Number: %.10s\n", buf, &result[CLEI_OFF(fc_number)]);
sprintf (buf, "%sCLEI Code: %.10s\n", buf, &result[CLEI_OFF(clei_code)]);
sprintf (buf, "%sProduct Year and Month: %.5s\n", buf, &result[CLEI_OFF(product_year_and_month)]);
sprintf (buf, "%s2D Label Location Code: %.2s\n", buf, &result[CLEI_OFF(label_location_code)]);
sprintf (buf, "%sSerial Number: %.5s\n", buf, &result[CLEI_OFF(serial_number)]);
sprintf (buf, "%sPCB Revision: %.5s\n", buf, &result[CLEI_OFF(pcb_revision)]);
sprintf (buf, "%sVendor Name: %.10s\n", buf, &result[CLEI_OFF(vendor_name)]);
return strlen(buf);
}
else
{
return sprintf(buf, "NONE\n");
}
}
static ssize_t show_thermal(struct device *dev, struct device_attribute *da,
char *buf)
{
int status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index * 2 + THERMAL_OFFSET;
status = psoc_read16(offset);
return sprintf(buf, "%d\n",
(s8)(status>>8) * 1000 );
}
static ssize_t show_pwm(struct device *dev, struct device_attribute *da,
char *buf)
{
int status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index;
status = psoc_read8(offset);
return sprintf(buf, "%d\n",
status);
}
static ssize_t set_pwm(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index;
u8 pwm = simple_strtol(buf, NULL, 10);
if(pwm > 255) pwm = 255;
psoc_ipmi_write(&pwm, offset, 1);
return count;
}
static ssize_t show_rpm(struct device *dev, struct device_attribute *da,
char *buf)
{
int status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index;
status = psoc_read16(offset);
return sprintf(buf, "%d\n",
status);
}
static ssize_t show_switch_tmp(struct device *dev, struct device_attribute *da,
char *buf)
{
u16 status=0;
u16 temp = 0;
status = psoc_ipmi_read((u8*)&temp, SWITCH_TMP_OFFSET, 2);
status = sprintf (buf, "%d\n", (s8)(temp>>8) * 1000 );
return strlen(buf);
}
static ssize_t set_switch_tmp(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
long temp = simple_strtol(buf, NULL, 10);
u16 temp2 = ( (temp/1000) <<8 ) & 0xFF00 ;
psoc_ipmi_write((u8*)&temp2, SWITCH_TMP_OFFSET, 2);
return count;
}
static ssize_t show_diag(struct device *dev, struct device_attribute *da,
char *buf)
{
u16 status=0;
u8 diag_flag = 0;
status = psoc_ipmi_read((u8*)&diag_flag, DIAG_FLAG_OFFSET, 1);
status = sprintf (buf, "%d\n", ((diag_flag & 0x80)?1:0));
return strlen(buf);
}
static ssize_t set_diag(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
u8 value = 0;
u8 diag = simple_strtol(buf, NULL, 10);
diag = diag?1:0;
psoc_ipmi_read((u8*)&value, DIAG_FLAG_OFFSET, 1);
if(diag) value |= (1<<7);
else value &= ~(1<<7);
psoc_ipmi_write((u8*)&value, DIAG_FLAG_OFFSET, 1);
return count;
}
static ssize_t show_version(struct device *dev, struct device_attribute *da,
char *buf)
{
u16 status=0;
status = psoc_read16(VERSION_OFFSET);
return sprintf(buf, "ver: %x.%x\n", (status & 0xFF00)>>8, (status & 0xFF) );
}
static ssize_t show_fan_led(struct device *dev, struct device_attribute *da,
char *buf)
{
int status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 bit = attr->index;
if(bit < 8) { status = psoc_read8(FAN_LED_OFFSET); }
#if FAN_NUM>4
if(bit >= 8) { status = psoc_read8(FAN_LED2_OFFSET); bit-=8; }
#endif
return sprintf(buf, "%d\n",
(status & (1<<bit))?1:0 );
}
static ssize_t set_fan_led(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
u8 bit = attr->index;
u8 led_state = 0;
u8 v = simple_strtol(buf, NULL, 10);
if(attr->index < 8) { led_state = psoc_read8(FAN_LED_OFFSET ); }
#if FAN_NUM>4
if(attr->index >= 8) { led_state = psoc_read8(FAN_LED2_OFFSET); bit-=8; }
#endif
if(v) led_state |= (1<<bit);
else led_state &= ~(1<<bit);
if(attr->index < 8) { psoc_ipmi_write(&led_state, FAN_LED_OFFSET, 1);}
#if FAN_NUM>4
if(attr->index >= 8) { psoc_ipmi_write(&led_state, FAN_LED2_OFFSET,1);}
#endif
return count;
}
static ssize_t show_value8(struct device *dev, struct device_attribute *da,
char *buf)
{
int status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index;
status = psoc_read8(offset);
return sprintf(buf, "0x%02X\n", status );
}
static long pmbus_reg2data_linear(int data, int linear16)
{
s16 exponent;
s32 mantissa;
long val;
if (linear16) { /* LINEAR16 */
exponent = -9;
mantissa = (u16) data;
} else { /* LINEAR11 */
exponent = ((s16)data) >> 11;
exponent = ((s16)( data & 0xF800) ) >> 11;
mantissa = ((s32)((data & 0x7ff) << 5)) >> 5;
}
//printk("data=%d, m=%d, e=%d\n", data, exponent, mantissa);
val = mantissa;
/* scale result to micro-units for power sensors */
val = val * 1000L;
if (exponent >= 0)
val <<= exponent;
else
val >>= -exponent;
return val;
}
static ssize_t show_psu_psoc(struct device *dev, struct device_attribute *da,
char *buf)
{
u16 status=0;
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u8 offset = attr->index + PSU_INFO_OFFSET;
status = psoc_read16(offset);
if((strstr(attr->dev_attr.attr.name, "vout")!=NULL)|(strstr(attr->dev_attr.attr.name, "in3")!=NULL)|(strstr(attr->dev_attr.attr.name, "in4")!=NULL)) {
offset=1;
}
else {
offset=0;
}
return sprintf(buf, "%ld \n", pmbus_reg2data_linear(status, offset ));
}
static ssize_t show_name(struct device *dev,
struct device_attribute *devattr, char *buf)
{
return sprintf(buf, "inv_psoc\n");
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_thermal, 0, 0);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_thermal, 0, 1);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_thermal, 0, 2);
static SENSOR_DEVICE_ATTR(temp4_input, S_IRUGO, show_thermal, 0, 3);
static SENSOR_DEVICE_ATTR(temp5_input, S_IRUGO, show_thermal, 0, 4);
static SENSOR_DEVICE_ATTR(thermal_psu1, S_IRUGO, show_thermal, 0, 5);
static SENSOR_DEVICE_ATTR(thermal_psu2, S_IRUGO, show_thermal, 0, 6);
static SENSOR_DEVICE_ATTR(temp7_input, S_IRUGO, show_thermal, 0, 5);
static SENSOR_DEVICE_ATTR(temp8_input, S_IRUGO, show_thermal, 0, 6);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 0 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 1 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 2 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm4, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 3 + PWM_OFFSET);
#if FAN_NUM > 4
static SENSOR_DEVICE_ATTR(pwm5, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 0 + PWM2_OFFSET);
#endif
static SENSOR_DEVICE_ATTR(pwm_psu1, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 4 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm_psu2, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 5 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm6, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 4 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(pwm7, S_IWUSR|S_IRUGO, show_pwm, set_pwm, 5 + PWM_OFFSET);
static SENSOR_DEVICE_ATTR(psu1, S_IRUGO, show_psu_st, 0, 0);
static SENSOR_DEVICE_ATTR(psu2, S_IRUGO, show_psu_st, 0, 1);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_rpm, 0, 0*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_rpm, 0, 1*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_rpm, 0, 2*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_rpm, 0, 3*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan5_input, S_IRUGO, show_rpm, 0, 4*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan6_input, S_IRUGO, show_rpm, 0, 5*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan7_input, S_IRUGO, show_rpm, 0, 6*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan8_input, S_IRUGO, show_rpm, 0, 7*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(rpm_psu1, S_IRUGO, show_rpm, 0, 8*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(rpm_psu2, S_IRUGO, show_rpm, 0, 9*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan11_input, S_IRUGO, show_rpm, 0, 8*2 + RPM_OFFSET);
static SENSOR_DEVICE_ATTR(fan12_input, S_IRUGO, show_rpm, 0, 9*2 + RPM_OFFSET);
#if FAN_NUM > 4
static SENSOR_DEVICE_ATTR(fan9_input , S_IRUGO, show_rpm, 0,0*2 + RPM2_OFFSET);
static SENSOR_DEVICE_ATTR(fan10_input, S_IRUGO, show_rpm, 0,1*2 + RPM2_OFFSET);
#endif
static SENSOR_DEVICE_ATTR(switch_tmp, S_IWUSR|S_IRUGO, show_switch_tmp, set_switch_tmp, 0);
static SENSOR_DEVICE_ATTR(temp6_input, S_IWUSR|S_IRUGO, show_switch_tmp, set_switch_tmp, 0);
static SENSOR_DEVICE_ATTR(diag, S_IWUSR|S_IRUGO, show_diag, set_diag, 0);
static SENSOR_DEVICE_ATTR(version, S_IRUGO, show_version, 0, 0);
static SENSOR_DEVICE_ATTR(fan_led_grn1, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 0);
static SENSOR_DEVICE_ATTR(fan_led_grn2, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 1);
static SENSOR_DEVICE_ATTR(fan_led_grn3, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 2);
static SENSOR_DEVICE_ATTR(fan_led_grn4, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 3);
static SENSOR_DEVICE_ATTR(fan_led_red1, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 4);
static SENSOR_DEVICE_ATTR(fan_led_red2, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 5);
static SENSOR_DEVICE_ATTR(fan_led_red3, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 6);
static SENSOR_DEVICE_ATTR(fan_led_red4, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 7);
#if FAN_NUM>4
static SENSOR_DEVICE_ATTR(fan_led_grn5, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 8);
static SENSOR_DEVICE_ATTR(fan_led_red5, S_IWUSR|S_IRUGO, show_fan_led, set_fan_led, 12);
static SENSOR_DEVICE_ATTR(fan_gpi2, S_IRUGO, show_value8, 0, FAN_GPI2_OFFSET);
#endif
static SENSOR_DEVICE_ATTR(fan_gpi, S_IRUGO, show_value8, 0, FAN_GPI_OFFSET);
static SENSOR_DEVICE_ATTR(psoc_psu1_vin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vin));
static SENSOR_DEVICE_ATTR(psoc_psu1_vout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vout));
static SENSOR_DEVICE_ATTR(psoc_psu1_iin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iin));
static SENSOR_DEVICE_ATTR(psoc_psu1_iout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iout));
static SENSOR_DEVICE_ATTR(psoc_psu1_pin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pin));
static SENSOR_DEVICE_ATTR(psoc_psu1_pout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pout));
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vin));
static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iin));
static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pin));
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_vout));
static SENSOR_DEVICE_ATTR(curr3_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_iout));
static SENSOR_DEVICE_ATTR(power3_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu1_pout));
static SENSOR_DEVICE_ATTR(psoc_psu2_vin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vin));
static SENSOR_DEVICE_ATTR(psoc_psu2_vout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vout));
static SENSOR_DEVICE_ATTR(psoc_psu2_iin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iin));
static SENSOR_DEVICE_ATTR(psoc_psu2_iout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iout));
static SENSOR_DEVICE_ATTR(psoc_psu2_pin, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pin));
static SENSOR_DEVICE_ATTR(psoc_psu2_pout, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pout));
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vin));
static SENSOR_DEVICE_ATTR(curr2_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iin));
static SENSOR_DEVICE_ATTR(power2_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pin));
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_vout));
static SENSOR_DEVICE_ATTR(curr4_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_iout));
static SENSOR_DEVICE_ATTR(power4_input, S_IRUGO, show_psu_psoc, 0, PSOC_PSU_OFF(psu2_pout));
//IPMI
static SENSOR_DEVICE_ATTR(thermal2_psu1, S_IRUGO, show_ipmi_pmbus, 0, PSU1 | PMBus_Temp2);
static SENSOR_DEVICE_ATTR(temp9_input, S_IRUGO, show_ipmi_pmbus, 0, PSU1 | PMBus_Temp2);
static SENSOR_DEVICE_ATTR(psoc_psu1_vendor, S_IRUGO, show_ipmi_pmbus, 0, PSU1 | PMBus_Vendor);
static SENSOR_DEVICE_ATTR(psoc_psu1_serial, S_IRUGO, show_ipmi_pmbus, 0, PSU1 | PMBus_Serial);
static SENSOR_DEVICE_ATTR(psoc_psu1_version, S_IRUGO, show_ipmi_pmbus, 0, PSU1 | PMBus_Version);
static SENSOR_DEVICE_ATTR(thermal2_psu2, S_IRUGO, show_ipmi_pmbus, 0, PSU2 | PMBus_Temp2);
static SENSOR_DEVICE_ATTR(temp10_input, S_IRUGO, show_ipmi_pmbus, 0, PSU2 | PMBus_Temp2);
static SENSOR_DEVICE_ATTR(psoc_psu2_vendor, S_IRUGO, show_ipmi_pmbus, 0, PSU2 | PMBus_Vendor);
static SENSOR_DEVICE_ATTR(psoc_psu2_serial, S_IRUGO, show_ipmi_pmbus, 0, PSU2 | PMBus_Serial);
static SENSOR_DEVICE_ATTR(psoc_psu2_version, S_IRUGO, show_ipmi_pmbus, 0, PSU2 | PMBus_Version);
//CLEI
#if FAN_CLEI_SUPPORT
static SENSOR_DEVICE_ATTR(fan1_clei, S_IRUGO, show_clei, 0, FAN1_CLEI_INDEX );
static SENSOR_DEVICE_ATTR(fan2_clei, S_IRUGO, show_clei, 0, FAN2_CLEI_INDEX );
static SENSOR_DEVICE_ATTR(fan3_clei, S_IRUGO, show_clei, 0, FAN3_CLEI_INDEX );
static SENSOR_DEVICE_ATTR(fan4_clei, S_IRUGO, show_clei, 0, FAN4_CLEI_INDEX );
#if FAN_NUM > 4
static SENSOR_DEVICE_ATTR(fan5_clei, S_IRUGO, show_clei, 0, FAN5_CLEI_INDEX );
#endif
#endif
#if PSU_CLEI_SUPPORT
static SENSOR_DEVICE_ATTR(psu1_clei, S_IRUGO, show_clei, 0, PSU1_CLEI_INDEX );
static SENSOR_DEVICE_ATTR(psu2_clei, S_IRUGO, show_clei, 0, PSU2_CLEI_INDEX );
#endif
static struct attribute *psoc_attributes[] = {
//name
&dev_attr_name.attr,
//thermal
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp4_input.dev_attr.attr,
&sensor_dev_attr_temp5_input.dev_attr.attr,
&sensor_dev_attr_thermal_psu1.dev_attr.attr,
&sensor_dev_attr_thermal_psu2.dev_attr.attr,
&sensor_dev_attr_temp7_input.dev_attr.attr,
&sensor_dev_attr_temp8_input.dev_attr.attr,
//pwm
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm4.dev_attr.attr,
#if FAN_NUM > 4
&sensor_dev_attr_pwm5.dev_attr.attr,
#endif
&sensor_dev_attr_pwm_psu1.dev_attr.attr,
&sensor_dev_attr_pwm_psu2.dev_attr.attr,
&sensor_dev_attr_pwm6.dev_attr.attr,
&sensor_dev_attr_pwm7.dev_attr.attr,
//rpm
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan8_input.dev_attr.attr,
#if FAN_NUM > 4
&sensor_dev_attr_fan9_input.dev_attr.attr,
&sensor_dev_attr_fan10_input.dev_attr.attr,
#endif
&sensor_dev_attr_rpm_psu1.dev_attr.attr,
&sensor_dev_attr_rpm_psu2.dev_attr.attr,
&sensor_dev_attr_fan11_input.dev_attr.attr,
&sensor_dev_attr_fan12_input.dev_attr.attr,
//switch temperature
&sensor_dev_attr_switch_tmp.dev_attr.attr,
&sensor_dev_attr_temp6_input.dev_attr.attr,
//diag flag
&sensor_dev_attr_diag.dev_attr.attr,
//version
&sensor_dev_attr_version.dev_attr.attr,
//fan led
&sensor_dev_attr_fan_led_grn1.dev_attr.attr,
&sensor_dev_attr_fan_led_grn2.dev_attr.attr,
&sensor_dev_attr_fan_led_grn3.dev_attr.attr,
&sensor_dev_attr_fan_led_grn4.dev_attr.attr,
&sensor_dev_attr_fan_led_red1.dev_attr.attr,
&sensor_dev_attr_fan_led_red2.dev_attr.attr,
&sensor_dev_attr_fan_led_red3.dev_attr.attr,
&sensor_dev_attr_fan_led_red4.dev_attr.attr,
#if FAN_NUM >4
&sensor_dev_attr_fan_led_grn5.dev_attr.attr,
&sensor_dev_attr_fan_led_red5.dev_attr.attr,
&sensor_dev_attr_fan_gpi2.dev_attr.attr,
#endif
//fan GPI
&sensor_dev_attr_fan_gpi.dev_attr.attr,
&sensor_dev_attr_psu1.dev_attr.attr,
&sensor_dev_attr_psu2.dev_attr.attr,
//psu_psoc
&sensor_dev_attr_psoc_psu1_vin.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_vout.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_iin.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_iout.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_pin.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_pout.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_vin.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_vout.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_iin.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_iout.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_pin.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_pout.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_curr1_input.dev_attr.attr,
&sensor_dev_attr_power1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_curr2_input.dev_attr.attr,
&sensor_dev_attr_power2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_curr3_input.dev_attr.attr,
&sensor_dev_attr_power3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_curr4_input.dev_attr.attr,
&sensor_dev_attr_power4_input.dev_attr.attr,
//ipmi_i2c_command
&sensor_dev_attr_thermal2_psu1.dev_attr.attr,
&sensor_dev_attr_temp9_input.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_vendor.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_serial.dev_attr.attr,
&sensor_dev_attr_psoc_psu1_version.dev_attr.attr,
&sensor_dev_attr_thermal2_psu2.dev_attr.attr,
&sensor_dev_attr_temp10_input.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_vendor.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_serial.dev_attr.attr,
&sensor_dev_attr_psoc_psu2_version.dev_attr.attr,
//clei
#if FAN_CLEI_SUPPORT
&sensor_dev_attr_fan1_clei.dev_attr.attr,
&sensor_dev_attr_fan2_clei.dev_attr.attr,
&sensor_dev_attr_fan3_clei.dev_attr.attr,
&sensor_dev_attr_fan4_clei.dev_attr.attr,
#if FAN_NUM > 4
&sensor_dev_attr_fan5_clei.dev_attr.attr,
#endif
#endif
#if PSU_CLEI_SUPPORT
&sensor_dev_attr_psu1_clei.dev_attr.attr,
&sensor_dev_attr_psu2_clei.dev_attr.attr,
#endif
NULL
};
static const struct attribute_group psoc_group = {
.attrs = psoc_attributes,
};
//=================================
static void check_switch_temp(void)
{
static struct file *f;
mm_segment_t old_fs;
set_fs(get_ds());
f = filp_open(SWITCH_TEMPERATURE_SOCK,O_RDONLY,0644);
if(IS_ERR(f)) {
return;
}
else {
char temp_str[]={0,0,0,0,0,0,0};
loff_t pos = 0;
u16 temp2 = 0;
old_fs = get_fs();
set_fs(KERNEL_DS);
vfs_read(f, temp_str,6,&pos);
temp2 = ((simple_strtoul(temp_str,NULL,10)/1000) <<8 ) & 0xFF00 ;
psoc_ipmi_write((u8*)&temp2, SWITCH_TMP_OFFSET, 2);
}
filp_close(f,NULL);
set_fs(old_fs);
}
static int psoc_polling_thread(void *p)
{
while (!kthread_should_stop())
{
check_switch_temp();
set_current_state(TASK_INTERRUPTIBLE);
if(kthread_should_stop())
break;
schedule_timeout(msecs_to_jiffies(PSOC_POLLING_PERIOD));
}
return 0;
}
static int __init inv_psoc_init(void)
{
int ret;
hwmon_dev = hwmon_device_register(NULL);
if (IS_ERR(hwmon_dev)) {
goto fail_hwmon_device_register;
}
device_kobj = kobject_create_and_add("device", &hwmon_dev->kobj);
if(!device_kobj) {
goto fail_hwmon_device_register;
}
ret = sysfs_create_group(device_kobj, &psoc_group);
if (ret) {
goto fail_create_group_hwmon;
}
ret = sysfs_create_group(&hwmon_dev->kobj, &psoc_group);
if (ret) {
goto fail_create_group_hwmon;
}
kthread_auto_update = kthread_run(psoc_polling_thread,NULL,"BMC_DRIVER");
if (IS_ERR(kthread_auto_update)) {
goto fail_create_group_hwmon;
}
return ret;
fail_create_group_hwmon:
hwmon_device_unregister(hwmon_dev);
fail_hwmon_device_register:
return -ENOMEM;
}
static void __exit inv_psoc_exit(void)
{
kthread_stop(kthread_auto_update);
if(ipmi_mh_user!=NULL) {ipmi_destroy_user(ipmi_mh_user);}
if(hwmon_dev != NULL) hwmon_device_unregister(hwmon_dev);
sysfs_remove_group(device_kobj, &psoc_group);
}
MODULE_AUTHOR("Ting.Jack <ting.jack@inventec>");
MODULE_DESCRIPTION("inv psoc driver");
MODULE_LICENSE("GPL");
module_init(inv_psoc_init);
module_exit(inv_psoc_exit);