sonic-buildimage/platform/broadcom/sonic-platform-modules-cel/seastone2/modules/switchboard_fpga.c

2365 lines
74 KiB
C
Raw Normal View History

/*
* switchboard_fpga.c - driver for seastone2 Switch board FPGA/CPLD.
*
* Author: Pradchaya Phucharoen
*
* Copyright (C) 2019 Celestica Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* /
* \--sys
* \--devices
* \--platform
* \--switchboard
* |--FPGA
* |--CPLD1
* |--CPLD2
* \--SFF
* |--QSFP[1..32]
* \--SFP1
*
*/
#ifndef TEST_MODE
#define MOD_VERSION "2.2.0"
#else
#define MOD_VERSION "TEST"
#endif
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/kobject.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <uapi/linux/stat.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/jiffies.h>
static int majorNumber;
#define CLASS_NAME "seastone2_fpga"
#define DRIVER_NAME "switchboard"
#define FPGA_PCI_NAME "Seastone2_fpga_pci"
#define DEVICE_NAME "fwupgrade"
static int smbus_access(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char rw, u8 cmd,
int size, union i2c_smbus_data *data);
static int fpga_i2c_access(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char rw, u8 cmd,
int size, union i2c_smbus_data *data);
static int fpgafw_init(void);
static void fpgafw_exit(void);
/*
========================================
FPGA PCIe BAR 0 Registers
========================================
Misc Control 0x00000000 0x000000FF.
I2C_CH1 0x00000100 - 0x00000110
I2C_CH2 0x00000200 - 0x00000210.
I2C_CH3 0x00000300 - 0x00000310.
I2C_CH4 0x00000400 - 0x00000410.
I2C_CH5 0x00000500 - 0x00000510.
I2C_CH6 0x00000600 - 0x00000610.
I2C_CH7 0x00000700 - 0x00000710.
I2C_CH8 0x00000800 - 0x00000810.
I2C_CH9 0x00000900 - 0x00000910.
I2C_CH10 0x00000A00 - 0x00000A10.
SPI Master 0x00001200 - 0x00001300.
PORT XCVR 0x00004000 - 0x00004FFF.
*/
/* MISC */
#define FPGA_VERSION 0x0000
#define FPGA_VERSION_MJ_MSK 0xff00
#define FPGA_VERSION_MN_MSK 0x00ff
#define FPGA_SCRATCH 0x0004
#define FPGA_BROAD_TYPE 0x0008
#define FPGA_BROAD_REV_MSK 0x0038
#define FPGA_BROAD_ID_MSK 0x0007
#define FPGA_PLL_STATUS 0x0014
#define BMC_I2C_SCRATCH 0x0020
#define FPGA_SLAVE_CPLD_REST 0x0030
#define FPGA_PERIPH_RESET_CTRL 0x0034
#define FPGA_INT_STATUS 0x0040
#define FPGA_INT_SRC_STATUS 0x0044
#define FPGA_INT_FLAG 0x0048
#define FPGA_INT_MASK 0x004c
#define FPGA_MISC_CTRL 0x0050
#define FPGA_MISC_STATUS 0x0054
#define FPGA_AVS_VID_STATUS 0x0068
#define FPGA_FEATURE_CARD_GPIO 0x0070
#define FPGA_PORT_XCVR_READY 0x000c
/* I2C_MASTER BASE ADDR */
#define I2C_MASTER_FREQ_1 0x0100
#define I2C_MASTER_CTRL_1 0x0104
#define I2C_MASTER_STATUS_1 0x0108
#define I2C_MASTER_DATA_1 0x010c
#define I2C_MASTER_PORT_ID_1 0x0110
#define I2C_MASTER_CH_1 1
#define I2C_MASTER_CH_2 2
#define I2C_MASTER_CH_3 3
#define I2C_MASTER_CH_4 4
#define I2C_MASTER_CH_5 5
#define I2C_MASTER_CH_6 6
#define I2C_MASTER_CH_7 7
#define I2C_MASTER_CH_8 8
#define I2C_MASTER_CH_9 9
#define I2C_MASTER_CH_10 10
#define I2C_MASTER_CH_TOTAL I2C_MASTER_CH_10
/* SPI_MASTER */
#define SPI_MASTER_WR_EN 0x1200 /* one bit */
#define SPI_MASTER_WR_DATA 0x1204 /* 32 bits */
#define SPI_MASTER_CHK_ID 0x1208 /* one bit */
#define SPI_MASTER_VERIFY 0x120c /* one bit */
#define SPI_MASTER_STATUS 0x1210 /* 15 bits */
#define SPI_MASTER_MODULE_RST 0x1214 /* one bit */
/* FPGA FRONT PANEL PORT MGMT */
#define SFF_PORT_CTRL_BASE 0x4000
#define SFF_PORT_STATUS_BASE 0x4004
#define SFF_PORT_INT_STATUS_BASE 0x4008
#define SFF_PORT_INT_MASK_BASE 0x400c
#define PORT_XCVR_REGISTER_SIZE 0x1000
/* PORT CTRL REGISTER
[31:7] RSVD
[6] LPMOD 6
[5] RSVD
[4] RST 4
[3:1] RSVD
[0] TXDIS 0
*/
#define CTRL_LPMOD 6
#define CTRL_RST 4
#define CTRL_TXDIS 0
/* PORT STATUS REGISTER
[31:6] RSVD
[5] IRQ 5
[4] PRESENT 4
[3] RSVD
[2] TXFAULT 2
[1] RXLOS 1
[0] MODABS 0
*/
#define STAT_IRQ 5
#define STAT_PRESENT 4
#define STAT_TXFAULT 2
#define STAT_RXLOS 1
#define STAT_MODABS 0
/* PORT INTRPT REGISTER
[31:6] RSVD
[5] INT_N 5
[4] PRESENT 4
[3] RSVD
[2] RSVD
[1] RXLOS 1
[0] MODABS 0
*/
#define INTR_INT_N 5
#define INTR_PRESENT 4
#define INTR_RXLOS 1
#define INTR_MODABS 0
/* PORT INT MASK REGISTER
[31:6] RSVD
[5] INT_N 5
[4] PRESENT 4
[3] RSVD
[2] RSVD
[1] RXLOS_INT 1
[0] MODABS 0
*/
#define MASK_INT_N 5
#define MASK_PRESENT 4
#define MASK_RXLOS 1
#define MASK_MODABS 0
enum {
I2C_SR_BIT_RXAK = 0,
I2C_SR_BIT_MIF,
I2C_SR_BIT_SRW,
I2C_SR_BIT_BCSTM,
I2C_SR_BIT_MAL,
I2C_SR_BIT_MBB,
I2C_SR_BIT_MAAS,
I2C_SR_BIT_MCF
};
enum {
I2C_CR_BIT_BCST = 0,
I2C_CR_BIT_RSTA = 2,
I2C_CR_BIT_TXAK,
I2C_CR_BIT_MTX,
I2C_CR_BIT_MSTA,
I2C_CR_BIT_MIEN,
I2C_CR_BIT_MEN,
};
/**
*
* The function is i2c algorithm implement to allow master access to
* correct endpoint devices trough the PCA9548 switch devices.
*
* FPGA I2C Master [mutex resource]
* |
* |
* ---------------------------
* | PCA9548(s) |
* ---1--2--3--4--5--6--7--8--
* | | | | | | | |
* EEPROM ... EEPROM
*
*/
#define VIRTUAL_I2C_QSFP_PORT 32
#define VIRTUAL_I2C_SFP_PORT 1
#define SFF_PORT_TOTAL VIRTUAL_I2C_QSFP_PORT + VIRTUAL_I2C_SFP_PORT
#define VIRTUAL_I2C_BUS_OFFSET 2
#define CPLD1_SLAVE_ADDR 0x30
#define CPLD2_SLAVE_ADDR 0x31
static struct class* fpgafwclass = NULL; ///< The device-driver class struct pointer
static struct device* fpgafwdev = NULL; ///< The device-driver device struct pointer
static struct platform_device *seastone2_dev;
#define PCI_VENDOR_ID_TEST 0x1af4
#ifndef PCI_VENDOR_ID_XILINX
#define PCI_VENDOR_ID_XILINX 0x10EE
#endif
#define FPGA_PCIE_DEVICE_ID 0x7021
#define TEST_PCIE_DEVICE_ID 0x1110
#ifdef DEBUG_KERN
#define info(fmt,args...) printk(KERN_INFO "line %3d : "fmt,__LINE__,##args)
#define check(REG) printk(KERN_INFO "line %3d : %-8s = %2.2X",__LINE__,#REG,ioread8(REG));
#else
#define info(fmt,args...)
#define check(REG)
#endif
#define GET_REG_BIT(REG,BIT) ((ioread8(REG) >> BIT) & 0x01)
#define SET_REG_BIT_H(REG,BIT) iowrite8(ioread8(REG) | (0x01 << BIT),REG)
#define SET_REG_BIT_L(REG,BIT) iowrite8(ioread8(REG) & ~(0x01 << BIT),REG)
static struct mutex fpga_i2c_master_locks[I2C_MASTER_CH_TOTAL];
/* Store lasted switch address and channel */
static uint16_t fpga_i2c_lasted_access_port[I2C_MASTER_CH_TOTAL];
enum PORT_TYPE {
NONE,
QSFP,
SFP
};
struct i2c_switch {
unsigned char master_bus; // I2C bus number
unsigned char switch_addr; // PCA9548 device address, 0xFF if directly connect to a bus.
unsigned char channel; // PCA9548 channel number. If the switch_addr is 0xFF, this value is ignored.
enum PORT_TYPE port_type; // QSFP/SFP tranceiver port type.
char calling_name[20]; // Calling name.
};
struct i2c_dev_data {
int portid;
struct i2c_switch pca9548;
};
/* PREDEFINED I2C SWITCH DEVICE TOPOLOGY */
static struct i2c_switch fpga_i2c_bus_dev[] = {
/* BUS2 QSFP Exported as virtual bus */
{I2C_MASTER_CH_2, 0x72, 0, QSFP, "QSFP1"}, {I2C_MASTER_CH_2, 0x72, 1, QSFP, "QSFP2"},
{I2C_MASTER_CH_2, 0x72, 2, QSFP, "QSFP3"}, {I2C_MASTER_CH_2, 0x72, 3, QSFP, "QSFP4"},
{I2C_MASTER_CH_2, 0x72, 4, QSFP, "QSFP5"}, {I2C_MASTER_CH_2, 0x72, 5, QSFP, "QSFP6"},
{I2C_MASTER_CH_2, 0x72, 6, QSFP, "QSFP7"}, {I2C_MASTER_CH_2, 0x72, 7, QSFP, "QSFP8"},
{I2C_MASTER_CH_2, 0x73, 0, QSFP, "QSFP9"}, {I2C_MASTER_CH_2, 0x73, 1, QSFP, "QSFP10"},
{I2C_MASTER_CH_2, 0x73, 2, QSFP, "QSFP11"}, {I2C_MASTER_CH_2, 0x73, 3, QSFP, "QSFP12"},
{I2C_MASTER_CH_2, 0x73, 4, QSFP, "QSFP13"}, {I2C_MASTER_CH_2, 0x73, 5, QSFP, "QSFP14"},
{I2C_MASTER_CH_2, 0x73, 6, QSFP, "QSFP15"}, {I2C_MASTER_CH_2, 0x73, 7, QSFP, "QSFP16"},
{I2C_MASTER_CH_2, 0x74, 0, QSFP, "QSFP17"}, {I2C_MASTER_CH_2, 0x74, 1, QSFP, "QSFP18"},
{I2C_MASTER_CH_2, 0x74, 2, QSFP, "QSFP19"}, {I2C_MASTER_CH_2, 0x74, 3, QSFP, "QSFP20"},
{I2C_MASTER_CH_2, 0x74, 4, QSFP, "QSFP21"}, {I2C_MASTER_CH_2, 0x74, 5, QSFP, "QSFP22"},
{I2C_MASTER_CH_2, 0x74, 6, QSFP, "QSFP23"}, {I2C_MASTER_CH_2, 0x74, 7, QSFP, "QSFP24"},
{I2C_MASTER_CH_2, 0x75, 0, QSFP, "QSFP25"}, {I2C_MASTER_CH_2, 0x75, 1, QSFP, "QSFP26"},
{I2C_MASTER_CH_2, 0x75, 2, QSFP, "QSFP27"}, {I2C_MASTER_CH_2, 0x75, 3, QSFP, "QSFP28"},
{I2C_MASTER_CH_2, 0x75, 4, QSFP, "QSFP29"}, {I2C_MASTER_CH_2, 0x75, 5, QSFP, "QSFP30"},
{I2C_MASTER_CH_2, 0x75, 6, QSFP, "QSFP31"}, {I2C_MASTER_CH_2, 0x75, 7, QSFP, "QSFP32"},
/* BUS1 SFP+ Exported as virtual bus */
{I2C_MASTER_CH_1, 0x72, 0, SFP, "SFP1"},
/* BUS3 Switchboard CPLD */
{I2C_MASTER_CH_3, 0xFF, 0, NONE, "I2C_3"},
};
#define VIRTUAL_I2C_PORT_LENGTH ARRAY_SIZE(fpga_i2c_bus_dev)
#define VIRTUAL_I2C_CPLD_INDEX SFF_PORT_TOTAL
struct fpga_device {
/* data mmio region */
void __iomem *data_base_addr;
resource_size_t data_mmio_start;
resource_size_t data_mmio_len;
};
static struct fpga_device fpga_dev = {
.data_base_addr = 0,
.data_mmio_start = 0,
.data_mmio_len = 0,
};
struct seastone2_fpga_data {
struct device *sff_devices[SFF_PORT_TOTAL];
struct i2c_client *sff_i2c_clients[SFF_PORT_TOTAL];
struct i2c_adapter *i2c_adapter[VIRTUAL_I2C_PORT_LENGTH];
struct mutex fpga_lock; // For FPGA internal lock
void __iomem * fpga_read_addr;
uint8_t cpld1_read_addr;
uint8_t cpld2_read_addr;
};
struct sff_device_data {
int portid;
enum PORT_TYPE port_type;
};
struct seastone2_fpga_data *fpga_data;
/*
* Kernel object for other module drivers.
* Other module can use these kobject as a parent.
*/
static struct kobject *fpga = NULL;
static struct kobject *cpld1 = NULL;
static struct kobject *cpld2 = NULL;
/**
* Device node in sysfs tree.
*/
static struct device *sff_dev = NULL;
/**
* Show the value of the register set by 'set_fpga_reg_address'
* If the address is not set by 'set_fpga_reg_address' first,
* The version register is selected by default.
* @param buf register value in hextring
* @return number of bytes read, or an error code
*/
static ssize_t get_fpga_reg_value(struct device *dev,
struct device_attribute *attr, char *buf)
{
// read data from the address
uint32_t data;
data = ioread32(fpga_data->fpga_read_addr);
return sprintf(buf, "0x%8.8x\n", data);
}
/**
* Store the register address
* @param buf address wanted to be read value of
* @return number of bytes stored, or an error code
*/
static ssize_t set_fpga_reg_address(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
uint32_t addr;
status = kstrtou32(buf, 0, &addr);
if (status == 0) {
fpga_data->fpga_read_addr = fpga_dev.data_base_addr + addr;
status = count;
}
return status;
}
/**
* Show value of fpga scratch register
* @param buf register value in hexstring
* @return number of bytes read, or an error code
*/
static ssize_t get_fpga_scratch(struct device *dev,
struct device_attribute *attr, char *buf)
{
uint32_t data;
data = ioread32(fpga_dev.data_base_addr + FPGA_SCRATCH);
data &= 0xffffffff;
return sprintf(buf, "0x%8.8x\n", data);
}
/**
* Store value of fpga scratch register
* @param buf scratch register value passing from user space
* @return number of bytes stored, or an error code
*/
static ssize_t set_fpga_scratch(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
uint32_t data;
status = kstrtou32(buf, 0, &data);
if (status == 0) {
iowrite32(data, fpga_dev.data_base_addr + FPGA_SCRATCH);
status = count;
}
return status;
}
/**
* Store a value in a specific register address
* @param buf the value and address in format '0xhhhh 0xhhhhhhhh'
* @return number of bytes sent by user space, or an error code
*/
static ssize_t set_fpga_reg_value(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
//register is 4 bytes
uint32_t addr;
uint32_t value;
uint32_t mode = 8;
char *tok;
char clone[count];
char *pclone = clone;
ssize_t status;
strcpy(clone, buf);
mutex_lock(&fpga_data->fpga_lock);
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
status = kstrtou32(tok, 0, &addr);
if (status != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
status = kstrtou32(tok, 0, &value);
if (status != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
mode = 32;
} else {
status = kstrtou32(tok, 0, &mode);
if (status != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
}
if (mode == 32) {
iowrite32(value, fpga_dev.data_base_addr + addr);
} else if (mode == 8) {
iowrite8(value, fpga_dev.data_base_addr + addr);
} else {
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
mutex_unlock(&fpga_data->fpga_lock);
return count;
}
/**
* Show FPGA port XCVR ready status
*/
static ssize_t ready_show(struct device *dev, struct device_attribute *attr, char *buf)
{
u32 data;
unsigned int REGISTER = FPGA_PORT_XCVR_READY;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> 0) & 1U);
}
/* FPGA attributes */
static DEVICE_ATTR( getreg, 0600, get_fpga_reg_value, set_fpga_reg_address);
static DEVICE_ATTR( scratch, 0600, get_fpga_scratch, set_fpga_scratch);
static DEVICE_ATTR( setreg, 0200, NULL , set_fpga_reg_value);
static DEVICE_ATTR_RO(ready);
static struct attribute *fpga_attrs[] = {
&dev_attr_getreg.attr,
&dev_attr_scratch.attr,
&dev_attr_setreg.attr,
&dev_attr_ready.attr,
NULL,
};
static struct attribute_group fpga_attr_grp = {
.attrs = fpga_attrs,
};
/* SW CPLDs attributes */
static ssize_t cpld1_getreg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// CPLD register is one byte
uint8_t data;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00,
I2C_SMBUS_READ, fpga_data->cpld1_read_addr,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t cpld1_getreg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
uint8_t addr;
status = kstrtou8(buf, 0, &addr);
if (status == 0) {
fpga_data->cpld1_read_addr = addr;
status = count;
}
return status;
}
static ssize_t cpld1_scratch_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// CPLD register is one byte
uint8_t data;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x01,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t cpld1_scratch_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
// CPLD register is one byte
uint8_t data;
ssize_t status;
int err;
status = kstrtou8(buf, 0, &data);
if (status != 0) {
return status;
}
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, 0x01,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return count;
}
static ssize_t cpld1_setreg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
uint8_t addr, value;
char *tok;
char clone[count];
char *pclone = clone;
ssize_t status;
int err;
strcpy(clone, buf);
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
return -EINVAL;
}
status = kstrtou8(tok, 0, &addr);
if (status != 0) {
return -EINVAL;
}
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
return -EINVAL;
}
status = kstrtou8(tok, 0, &value);
if (status != 0) {
return -EINVAL;
}
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, addr,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&value);
if (err < 0)
return err;
return count;
}
struct device_attribute dev_attr_cpld1_getreg = __ATTR(getreg, 0600, cpld1_getreg_show, cpld1_getreg_store);
struct device_attribute dev_attr_cpld1_scratch = __ATTR(scratch, 0600, cpld1_scratch_show, cpld1_scratch_store);
struct device_attribute dev_attr_cpld1_setreg = __ATTR(setreg, 0200, NULL, cpld1_setreg_store);
static struct attribute *cpld1_attrs[] = {
&dev_attr_cpld1_getreg.attr,
&dev_attr_cpld1_scratch.attr,
&dev_attr_cpld1_setreg.attr,
NULL,
};
static struct attribute_group cpld1_attr_grp = {
.attrs = cpld1_attrs,
};
static ssize_t cpld2_getreg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// CPLD register is one byte
uint8_t data;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, fpga_data->cpld2_read_addr,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t cpld2_getreg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
// CPLD register is one byte
uint8_t addr;
ssize_t status;
status = kstrtou8(buf, 0, &addr);
if (status == 0) {
fpga_data->cpld2_read_addr = addr;
status = count;
}
return status;
}
static ssize_t cpld2_scratch_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// CPLD register is one byte
uint8_t data;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x01,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t cpld2_scratch_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
// CPLD register is one byte
uint8_t data;
int err;
ssize_t status;
status = kstrtou8(buf, 0, &data);
if (status != 0) {
return -EINVAL;
}
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, 0x01,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&data);
if (err < 0)
return err;
return count;
}
static ssize_t cpld2_setreg_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
uint8_t addr, value;
char *tok;
char clone[count];
char *pclone = clone;
ssize_t status;
int err;
strcpy(clone, buf);
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
return -EINVAL;
}
status = kstrtou8(tok, 0, &addr);
if (status != 0) {
return -EINVAL;
}
tok = strsep((char**)&pclone, " ");
if (tok == NULL) {
return -EINVAL;
}
status = kstrtou8(tok, 0, &value);
if (status != 0) {
return -EINVAL;
}
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, addr,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&value);
if (err < 0)
return err;
return count;
}
struct device_attribute dev_attr_cpld2_getreg = __ATTR(getreg, 0600, cpld2_getreg_show, cpld2_getreg_store);
struct device_attribute dev_attr_cpld2_scratch = __ATTR(scratch, 0600, cpld2_scratch_show, cpld2_scratch_store);
struct device_attribute dev_attr_cpld2_setreg = __ATTR(setreg, 0200, NULL, cpld2_setreg_store);
static struct attribute *cpld2_attrs[] = {
&dev_attr_cpld2_getreg.attr,
&dev_attr_cpld2_scratch.attr,
&dev_attr_cpld2_setreg.attr,
NULL,
};
static struct attribute_group cpld2_attr_grp = {
.attrs = cpld2_attrs,
};
/* QSFP/SFP+ attributes */
static ssize_t qsfp_modirq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_STATUS_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> STAT_IRQ) & 1U);
}
DEVICE_ATTR_RO(qsfp_modirq);
static ssize_t qsfp_modprs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_STATUS_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> STAT_PRESENT) & 1U);
}
DEVICE_ATTR_RO(qsfp_modprs);
static ssize_t sfp_txfault_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_STATUS_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> STAT_TXFAULT) & 1U);
}
DEVICE_ATTR_RO(sfp_txfault);
static ssize_t sfp_rxlos_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_STATUS_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> STAT_RXLOS) & 1U);
}
DEVICE_ATTR_RO(sfp_rxlos);
static ssize_t sfp_modabs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_STATUS_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> STAT_MODABS) & 1U);
}
DEVICE_ATTR_RO(sfp_modabs);
static ssize_t qsfp_lpmode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> CTRL_LPMOD) & 1U);
}
static ssize_t qsfp_lpmode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
uint32_t value;
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
// check if value is 0 clear
data = ioread32(fpga_dev.data_base_addr + REGISTER);
if (!value)
data = data & ~( (u32)0x1 << CTRL_LPMOD);
else
data = data | ((u32)0x1 << CTRL_LPMOD);
iowrite32(data, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(qsfp_lpmode);
static ssize_t qsfp_reset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> CTRL_RST) & 1U);
}
static ssize_t qsfp_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
uint32_t value;
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
// check if value is 0 clear
data = ioread32(fpga_dev.data_base_addr + REGISTER);
if (!value)
data = data & ~( (u32)0x1 << CTRL_RST);
else
data = data | ((u32)0x1 << CTRL_RST);
iowrite32(data, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(qsfp_reset);
static ssize_t qsfp_isr_flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 data;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_STATUS_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_INT_N) | BIT(INTR_PRESENT);
mutex_lock(&fpga_data->fpga_lock);
data = (u8) ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
/*
* Unify the return pattern to 2-bit
* [1] : module interrupt
* [0] : presence
*/
data = data & valid_bits;
data = data >> 4;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t qsfp_isr_flags_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
u32 value;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_STATUS_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_INT_N) | BIT(INTR_PRESENT);
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
value = value << 4;
value = value & valid_bits;
iowrite32(value, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(qsfp_isr_flags);
static ssize_t qsfp_isr_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_MASK_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_INT_N) | BIT(INTR_PRESENT);
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
/*
* Unify the return pattern to 2-bit
* [1] : module interrupt
* [0] : presence
*/
data = data & valid_bits;
data = data >> 4;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t qsfp_isr_mask_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
u32 value;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_MASK_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_INT_N) | BIT(INTR_PRESENT);
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
value = value << 4;
value = value & valid_bits;
iowrite32(value, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(qsfp_isr_mask);
static ssize_t sfp_txdisable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
return sprintf(buf, "%d\n", (data >> CTRL_TXDIS) & 1U);
}
static ssize_t sfp_txdisable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
long value;
u32 data;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_CTRL_BASE + (portid - 1) * 0x10;
mutex_lock(&fpga_data->fpga_lock);
status = kstrtol(buf, 0, &value);
if (status == 0) {
// check if value is 0 clear
data = ioread32(fpga_dev.data_base_addr + REGISTER);
if (!value)
data = data & ~( (u32)0x1 << CTRL_TXDIS);
else
data = data | ((u32)0x1 << CTRL_TXDIS);
iowrite32(data, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(sfp_txdisable);
static ssize_t sfp_isr_flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 data;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_STATUS_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_RXLOS) | BIT(INTR_MODABS);
mutex_lock(&fpga_data->fpga_lock);
data = (u8) ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
data = data & valid_bits;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t sfp_isr_flags_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
u32 value;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_STATUS_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_INT_N) | BIT(INTR_PRESENT);
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
value = value & valid_bits;
iowrite32(value, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(sfp_isr_flags);
static ssize_t sfp_isr_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 data;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_MASK_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_RXLOS) | BIT(INTR_MODABS);
mutex_lock(&fpga_data->fpga_lock);
data = ioread32(fpga_dev.data_base_addr + REGISTER);
mutex_unlock(&fpga_data->fpga_lock);
data = data & valid_bits;
return sprintf(buf, "0x%2.2x\n", data);
}
static ssize_t sfp_isr_mask_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
ssize_t status;
u32 value;
u8 valid_bits;
struct sff_device_data *dev_data = dev_get_drvdata(dev);
unsigned int portid = dev_data->portid;
unsigned int REGISTER = SFF_PORT_INT_MASK_BASE + (portid - 1) * 0x10;
valid_bits = BIT(INTR_RXLOS) | BIT(INTR_MODABS);
mutex_lock(&fpga_data->fpga_lock);
status = kstrtou32(buf, 0, &value);
if (status == 0) {
value = value & valid_bits;
iowrite32(value, fpga_dev.data_base_addr + REGISTER);
status = count;
}
mutex_unlock(&fpga_data->fpga_lock);
return status;
}
DEVICE_ATTR_RW(sfp_isr_mask);
static struct attribute *sff_attrs[] = {
&dev_attr_qsfp_modirq.attr,
&dev_attr_qsfp_modprs.attr,
&dev_attr_qsfp_lpmode.attr,
&dev_attr_qsfp_reset.attr,
&dev_attr_qsfp_isr_flags.attr,
&dev_attr_qsfp_isr_mask.attr,
&dev_attr_sfp_txfault.attr,
&dev_attr_sfp_rxlos.attr,
&dev_attr_sfp_modabs.attr,
&dev_attr_sfp_txdisable.attr,
&dev_attr_sfp_isr_flags.attr,
&dev_attr_sfp_isr_mask.attr,
NULL,
};
static struct attribute_group sff_attr_grp = {
.attrs = sff_attrs,
};
static const struct attribute_group *sff_attr_grps[] = {
&sff_attr_grp,
NULL
};
static ssize_t port_led_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// value can be "nomal", "test"
__u8 led_mode_1, led_mode_2;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x09,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_mode_1);
if (err < 0)
return err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x09,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_mode_2);
if (err < 0)
return err;
return sprintf(buf, "%s %s\n",
led_mode_1 ? "test" : "normal",
led_mode_2 ? "test" : "normal");
}
static ssize_t port_led_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int status;
__u8 led_mode_1;
if (sysfs_streq(buf, "test")) {
led_mode_1 = 0x01;
} else if (sysfs_streq(buf, "normal")) {
led_mode_1 = 0x00;
} else {
return -EINVAL;
}
status = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, 0x09,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_mode_1);
status = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_WRITE, 0x09,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_mode_1);
return count;
}
DEVICE_ATTR_RW(port_led_mode);
// Only work when port_led_mode set to 1
static ssize_t port_led_color_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
// value can be "off", "green", "amber", "both"
__u8 led_color1, led_color2;
int err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x0A,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_color1);
if (err < 0)
return err;
err = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00, I2C_SMBUS_READ, 0x0A,
I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&led_color2);
if (err < 0)
return err;
return sprintf(buf, "%s %s\n",
led_color1 == 0x03 ? "off" : led_color1 == 0x02 ? "green" : led_color1 == 0x01 ? "amber" : "both",
led_color2 == 0x03 ? "off" : led_color2 == 0x02 ? "green" : led_color2 == 0x01 ? "amber" : "both");
}
static ssize_t port_led_color_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int status;
__u8 led_color;
if (sysfs_streq(buf, "off")) {
led_color = 0x03;
} else if (sysfs_streq(buf, "green")) {
led_color = 0x02;
} else if (sysfs_streq(buf, "amber")) {
led_color = 0x01;
} else if (sysfs_streq(buf, "both")) {
led_color = 0x00;
} else {
status = -EINVAL;
return status;
}
status = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD1_SLAVE_ADDR, 0x00,
I2C_SMBUS_WRITE, 0x0A, I2C_SMBUS_BYTE_DATA,
(union i2c_smbus_data*)&led_color);
status = fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX],
CPLD2_SLAVE_ADDR, 0x00,
I2C_SMBUS_WRITE, 0x0A, I2C_SMBUS_BYTE_DATA,
(union i2c_smbus_data*)&led_color);
return count;
}
DEVICE_ATTR_RW(port_led_color);
static struct attribute *sff_led_test[] = {
&dev_attr_port_led_mode.attr,
&dev_attr_port_led_color.attr,
NULL,
};
static struct attribute_group sff_led_test_grp = {
.attrs = sff_led_test,
};
static struct device * seastone2_sff_init(int portid) {
struct sff_device_data *new_data;
struct device *new_device;
new_data = kzalloc(sizeof(*new_data), GFP_KERNEL);
if (!new_data) {
printk(KERN_ALERT "Cannot alloc sff device data @port%d", portid);
return NULL;
}
/* The QSFP port ID start from 1 */
new_data->portid = portid + 1;
new_data->port_type = fpga_i2c_bus_dev[portid].port_type;
new_device = device_create_with_groups(fpgafwclass, sff_dev,
MKDEV(0, 0), new_data, sff_attr_grps, "%s",
fpga_i2c_bus_dev[portid].calling_name);
if (IS_ERR(new_device)) {
printk(KERN_ALERT "Cannot create sff device @port%d", portid);
kfree(new_data);
return NULL;
}
return new_device;
}
static int i2c_wait_ack(struct i2c_adapter *a, unsigned long timeout, int writing) {
int error = 0;
int Status;
struct i2c_dev_data *new_data = i2c_get_adapdata(a);
void __iomem *pci_bar = fpga_dev.data_base_addr;
unsigned int REG_FDR0;
unsigned int REG_CR0;
unsigned int REG_SR0;
unsigned int REG_DR0;
unsigned int REG_ID0;
unsigned int master_bus = new_data->pca9548.master_bus;
if (master_bus < I2C_MASTER_CH_1 || master_bus > I2C_MASTER_CH_TOTAL) {
error = -EINVAL;
return error;
}
REG_FDR0 = I2C_MASTER_FREQ_1 + (master_bus - 1) * 0x0100;
REG_CR0 = I2C_MASTER_CTRL_1 + (master_bus - 1) * 0x0100;
REG_SR0 = I2C_MASTER_STATUS_1 + (master_bus - 1) * 0x0100;
REG_DR0 = I2C_MASTER_DATA_1 + (master_bus - 1) * 0x0100;
REG_ID0 = I2C_MASTER_PORT_ID_1 + (master_bus - 1) * 0x0100;
check(pci_bar + REG_SR0);
check(pci_bar + REG_CR0);
timeout = jiffies + msecs_to_jiffies(timeout);
while (1) {
Status = ioread8(pci_bar + REG_SR0);
if (jiffies > timeout) {
info("Status %2.2X", Status);
info("Error Timeout");
error = -ETIMEDOUT;
break;
}
if (Status & (1 << I2C_SR_BIT_MIF)) {
break;
}
if (writing == 0 && (Status & (1 << I2C_SR_BIT_MCF))) {
break;
}
}
Status = ioread8(pci_bar + REG_SR0);
iowrite8(0, pci_bar + REG_SR0);
if (error < 0) {
info("Status %2.2X", Status);
return error;
}
if (!(Status & (1 << I2C_SR_BIT_MCF))) {
info("Error Unfinish");
return -EIO;
}
if (Status & (1 << I2C_SR_BIT_MAL)) {
info("Error MAL");
return -EAGAIN;
}
if (Status & (1 << I2C_SR_BIT_RXAK)) {
info( "SL No Acknowlege");
if (writing) {
info("Error No Acknowlege");
iowrite8(1 << I2C_CR_BIT_MEN, pci_bar + REG_CR0);
return -ENXIO;
}
} else {
info( "SL Acknowlege");
}
return 0;
}
static int smbus_access(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char rw, u8 cmd,
int size, union i2c_smbus_data *data)
{
int error = 0;
int cnt = 0;
int bid = 0;
struct i2c_dev_data *dev_data;
void __iomem *pci_bar;
unsigned int portid, master_bus;
unsigned int REG_FDR0;
unsigned int REG_CR0;
unsigned int REG_SR0;
unsigned int REG_DR0;
unsigned int REG_ID0;
REG_FDR0 = 0;
REG_CR0 = 0;
REG_SR0 = 0;
REG_DR0 = 0;
REG_ID0 = 0;
/* Write the command register */
dev_data = i2c_get_adapdata(adapter);
portid = dev_data->portid;
pci_bar = fpga_dev.data_base_addr;
#ifdef DEBUG_KERN
printk(KERN_INFO "portid %2d|@ 0x%2.2X|f 0x%4.4X|(%d)%-5s| (%d)%-15s|CMD %2.2X "
, portid, addr, flags, rw, rw == 1 ? "READ " : "WRITE"
, size, size == 0 ? "QUICK" :
size == 1 ? "BYTE" :
size == 2 ? "BYTE_DATA" :
size == 3 ? "WORD_DATA" :
size == 4 ? "PROC_CALL" :
size == 5 ? "BLOCK_DATA" :
size == 8 ? "I2C_BLOCK_DATA" : "ERROR"
, cmd);
#endif
/* Map the size to what the chip understands */
switch (size) {
case I2C_SMBUS_QUICK:
case I2C_SMBUS_BYTE:
case I2C_SMBUS_BYTE_DATA:
case I2C_SMBUS_WORD_DATA:
case I2C_SMBUS_BLOCK_DATA:
case I2C_SMBUS_I2C_BLOCK_DATA:
break;
default:
printk(KERN_INFO "Unsupported transaction %d\n", size);
error = -EOPNOTSUPP;
goto Done;
}
master_bus = dev_data->pca9548.master_bus;
if (master_bus < I2C_MASTER_CH_1 || master_bus > I2C_MASTER_CH_TOTAL) {
error = -ENXIO;
goto Done;
}
REG_FDR0 = I2C_MASTER_FREQ_1 + (master_bus - 1) * 0x0100;
REG_CR0 = I2C_MASTER_CTRL_1 + (master_bus - 1) * 0x0100;
REG_SR0 = I2C_MASTER_STATUS_1 + (master_bus - 1) * 0x0100;
REG_DR0 = I2C_MASTER_DATA_1 + (master_bus - 1) * 0x0100;
REG_ID0 = I2C_MASTER_PORT_ID_1 + (master_bus - 1) * 0x0100;
iowrite8(portid, pci_bar + REG_ID0);
////[S][ADDR/R]
// Clear status register
iowrite8(0, pci_bar + REG_SR0);
iowrite8(1 << I2C_CR_BIT_MIEN |
1 << I2C_CR_BIT_MTX |
1 << I2C_CR_BIT_MSTA , pci_bar + REG_CR0);
SET_REG_BIT_H(pci_bar + REG_CR0, I2C_CR_BIT_MEN);
if (rw == I2C_SMBUS_READ &&
(size == I2C_SMBUS_QUICK || size == I2C_SMBUS_BYTE)) {
// sent device address with Read mode
iowrite8(addr << 1 | 0x01, pci_bar + REG_DR0);
} else {
// sent device address with Write mode
iowrite8(addr << 1 | 0x00, pci_bar + REG_DR0);
}
info( "MS Start");
//// Wait {A}
error = i2c_wait_ack(adapter, 12, 1);
if (error < 0) {
info( "get error %d", error);
goto Done;
}
//// [CMD]{A}
if (size == I2C_SMBUS_BYTE_DATA ||
size == I2C_SMBUS_WORD_DATA ||
size == I2C_SMBUS_BLOCK_DATA ||
size == I2C_SMBUS_I2C_BLOCK_DATA ||
(size == I2C_SMBUS_BYTE && rw == I2C_SMBUS_WRITE)) {
// sent command code to data register
iowrite8(cmd, pci_bar + REG_DR0);
info( "MS Send CMD 0x%2.2X", cmd);
// Wait {A}
error = i2c_wait_ack(adapter, 12, 1);
if (error < 0) {
info( "get error %d", error);
goto Done;
}
}
switch (size) {
case I2C_SMBUS_BYTE_DATA:
cnt = 1; break;
case I2C_SMBUS_WORD_DATA:
cnt = 2; break;
case I2C_SMBUS_BLOCK_DATA:
case I2C_SMBUS_I2C_BLOCK_DATA:
/* In block data modes keep number of byte in block[0] */
cnt = data->block[0];
break;
default:
cnt = 0; break;
}
// [CNT] used only block data write
if (size == I2C_SMBUS_BLOCK_DATA && rw == I2C_SMBUS_WRITE) {
iowrite8(cnt, pci_bar + REG_DR0);
info( "MS Send CNT 0x%2.2X", cnt);
// Wait {A}
error = i2c_wait_ack(adapter, 12, 1);
if (error < 0) {
info( "get error %d", error);
goto Done;
}
}
// [DATA]{A}
if ( rw == I2C_SMBUS_WRITE && (
size == I2C_SMBUS_BYTE ||
size == I2C_SMBUS_BYTE_DATA ||
size == I2C_SMBUS_WORD_DATA ||
size == I2C_SMBUS_BLOCK_DATA ||
size == I2C_SMBUS_I2C_BLOCK_DATA
)) {
bid = 0;
info( "MS prepare to sent [%d bytes]", cnt);
if (size == I2C_SMBUS_BLOCK_DATA || size == I2C_SMBUS_I2C_BLOCK_DATA) {
bid = 1; // block[0] is cnt;
cnt += 1; // offset from block[0]
}
for (; bid < cnt; bid++) {
iowrite8(data->block[bid], pci_bar + REG_DR0);
info( " Data > %2.2X", data->block[bid]);
// Wait {A}
error = i2c_wait_ack(adapter, 12, 1);
if (error < 0) {
goto Done;
}
}
}
// REPEATE START
if ( rw == I2C_SMBUS_READ && (
size == I2C_SMBUS_BYTE_DATA ||
size == I2C_SMBUS_WORD_DATA ||
size == I2C_SMBUS_BLOCK_DATA ||
size == I2C_SMBUS_I2C_BLOCK_DATA
)) {
info( "MS Repeated Start");
SET_REG_BIT_L(pci_bar + REG_CR0, I2C_CR_BIT_MEN);
iowrite8(1 << I2C_CR_BIT_MIEN |
1 << I2C_CR_BIT_MTX |
1 << I2C_CR_BIT_MSTA |
1 << I2C_CR_BIT_RSTA , pci_bar + REG_CR0);
SET_REG_BIT_H(pci_bar + REG_CR0, I2C_CR_BIT_MEN);
// sent Address with Read mode
iowrite8( addr << 1 | 0x1 , pci_bar + REG_DR0);
// Wait {A}
error = i2c_wait_ack(adapter, 12, 1);
if (error < 0) {
goto Done;
}
}
if ( rw == I2C_SMBUS_READ && (
size == I2C_SMBUS_BYTE ||
size == I2C_SMBUS_BYTE_DATA ||
size == I2C_SMBUS_WORD_DATA ||
size == I2C_SMBUS_BLOCK_DATA ||
size == I2C_SMBUS_I2C_BLOCK_DATA
)) {
switch (size) {
case I2C_SMBUS_BYTE:
case I2C_SMBUS_BYTE_DATA:
cnt = 1; break;
case I2C_SMBUS_WORD_DATA:
cnt = 2; break;
case I2C_SMBUS_BLOCK_DATA:
// will be changed after recived first data
cnt = 3; break;
case I2C_SMBUS_I2C_BLOCK_DATA:
cnt = data->block[0]; break;
default:
cnt = 0; break;
}
bid = 0;
info( "MS Receive");
//set to Receive mode
iowrite8(1 << I2C_CR_BIT_MEN |
1 << I2C_CR_BIT_MIEN |
1 << I2C_CR_BIT_MSTA , pci_bar + REG_CR0);
for (bid = -1; bid < cnt; bid++) {
// Wait for byte transfer
error = i2c_wait_ack(adapter, 12, 0);
if (error < 0) {
goto Done;
}
if (bid == cnt - 2) {
info( "SET NAK");
SET_REG_BIT_H(pci_bar + REG_CR0, I2C_CR_BIT_TXAK);
}
if (bid < 0) {
ioread8(pci_bar + REG_DR0);
info( "READ Dummy Byte" );
} else {
if (bid == cnt - 1) {
info ( "SET STOP in read loop");
SET_REG_BIT_L(pci_bar + REG_CR0, I2C_CR_BIT_MSTA);
}
if (size == I2C_SMBUS_I2C_BLOCK_DATA) {
// block[0] is read length
data->block[bid + 1] = ioread8(pci_bar + REG_DR0);
} else {
data->block[bid] = ioread8(pci_bar + REG_DR0);
}
info( "DATA IN [%d] %2.2X", bid, data->block[bid]);
if (size == I2C_SMBUS_BLOCK_DATA && bid == 0) {
cnt = data->block[0] + 1;
}
}
}
}
// [P]
SET_REG_BIT_L(pci_bar + REG_CR0, I2C_CR_BIT_MSTA);
info( "MS STOP");
Done:
iowrite8(1 << I2C_CR_BIT_MEN, pci_bar + REG_CR0);
check(pci_bar + REG_CR0);
check(pci_bar + REG_SR0);
#ifdef DEBUG_KERN
printk(KERN_INFO "END --- Error code %d", error);
#endif
return error;
}
/**
* Wrapper of smbus_access access with PCA9548 I2C switch management.
* This function set PCA9548 switches to the proper slave channel.
* Only one channel among switches chip is selected during communication time.
*
* Note: If the bus does not have any PCA9548 on it, the switch_addr must be
* set to 0xFF, it will use normal smbus_access function.
*/
static int fpga_i2c_access(struct i2c_adapter *adapter, u16 addr,
unsigned short flags, char rw, u8 cmd,
int size, union i2c_smbus_data *data)
{
int error = 0;
struct i2c_dev_data *dev_data;
unsigned char master_bus;
unsigned char switch_addr;
unsigned char channel;
uint16_t prev_port = 0;
unsigned char prev_switch;
unsigned char prev_ch;
int retry;
dev_data = i2c_get_adapdata(adapter);
master_bus = dev_data->pca9548.master_bus;
switch_addr = dev_data->pca9548.switch_addr;
channel = dev_data->pca9548.channel;
// Acquire the master resource.
mutex_lock(&fpga_i2c_master_locks[master_bus - 1]);
prev_port = fpga_i2c_lasted_access_port[master_bus - 1];
prev_switch = (unsigned char)(prev_port >> 8) & 0xFF;
prev_ch = (unsigned char)(prev_port & 0xFF);
if (switch_addr != 0xFF) {
// Check lasted access switch address on a master
if ( prev_switch != switch_addr && prev_switch != 0 ) {
// reset prev_port PCA9548 chip
retry = 3;
while (retry--) {
error = smbus_access(adapter, (u16)(prev_switch), flags,
I2C_SMBUS_WRITE, 0x00,
I2C_SMBUS_BYTE, NULL);
if (error >= 0) {
break;
} else {
dev_dbg(&adapter->dev,
"Failed to deselect ch %d of 0x%x, CODE %d\n",
prev_ch, prev_switch, error);
}
}
if (retry < 0) {
goto release_unlock;
}
// set PCA9548 to current channel
retry = 3;
while (retry--) {
error = smbus_access(adapter, switch_addr, flags,
I2C_SMBUS_WRITE, 1 << channel,
I2C_SMBUS_BYTE, NULL);
if (error >= 0) {
break;
} else {
dev_dbg(&adapter->dev,
"Failed to deselect ch %d of 0x%x, CODE %d\n",
prev_ch, prev_switch, error);
}
}
if (retry < 0) {
goto release_unlock;
}
// update lasted port
fpga_i2c_lasted_access_port[master_bus - 1] = switch_addr << 8 | channel;
} else {
// check if channel is also changes
if ( prev_ch != channel || prev_switch == 0 ) {
// set new PCA9548 at switch_addr to current
retry = 3;
while (retry--) {
error = smbus_access(adapter, switch_addr, flags,
I2C_SMBUS_WRITE, 1 << channel,
I2C_SMBUS_BYTE, NULL);
if (error >= 0) {
break;
} else {
dev_dbg(&adapter->dev,
"Failed to deselect ch %d of 0x%x, CODE %d\n",
prev_ch, prev_switch, error);
}
}
if (retry < 0) {
goto release_unlock;
}
// update lasted port
fpga_i2c_lasted_access_port[master_bus - 1] = switch_addr << 8 | channel;
}
}
}
// Do SMBus communication
error = smbus_access(adapter, addr, flags, rw, cmd, size, data);
if (error < 0) {
dev_dbg( &adapter->dev,
"smbus_xfer failed (%d) @ 0x%2.2X|f 0x%4.4X|(%d)%-5s| (%d)%-10s|CMD %2.2X "
, error, addr, flags, rw, rw == 1 ? "READ " : "WRITE"
, size, size == 0 ? "QUICK" :
size == 1 ? "BYTE" :
size == 2 ? "BYTE_DATA" :
size == 3 ? "WORD_DATA" :
size == 4 ? "PROC_CALL" :
size == 5 ? "BLOCK_DATA" :
size == 8 ? "I2C_BLOCK_DATA" : "ERROR"
, cmd);
}
release_unlock:
mutex_unlock(&fpga_i2c_master_locks[master_bus - 1]);
dev_dbg(&adapter->dev, "switch ch %d of 0x%x -> ch %d of 0x%x\n",
prev_ch, prev_switch, channel, switch_addr);
return error;
}
/**
* A callback function show available smbus functions.
*/
static u32 fpga_i2c_func(struct i2c_adapter *a)
{
return I2C_FUNC_SMBUS_QUICK |
I2C_FUNC_SMBUS_BYTE |
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA |
I2C_FUNC_SMBUS_BLOCK_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK;
}
static const struct i2c_algorithm seastone2_i2c_algorithm = {
.smbus_xfer = fpga_i2c_access,
.functionality = fpga_i2c_func,
};
/**
* Create virtual I2C bus adapter for switch devices
* @param pdev platform device pointer
* @param portid virtual i2c port id for switch device mapping
* @param bus_number_offset bus offset for virtual i2c adapter in system
* @return i2c adapter.
*
* When bus_number_offset is -1, created adapter with dynamic bus number.
* Otherwise create adapter at i2c bus = bus_number_offset + portid.
*/
static struct i2c_adapter * seastone2_i2c_init(struct platform_device *pdev,
int portid, int bus_number_offset)
{
int error;
struct i2c_adapter *new_adapter;
struct i2c_dev_data *new_data;
void __iomem *i2c_freq_base_reg;
new_adapter = kzalloc(sizeof(*new_adapter), GFP_KERNEL);
if (!new_adapter) {
printk(KERN_ALERT "Cannot alloc i2c adapter for %s",
fpga_i2c_bus_dev[portid].calling_name);
return NULL;
}
new_adapter->owner = THIS_MODULE;
new_adapter->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
new_adapter->algo = &seastone2_i2c_algorithm;
/* If the bus offset is -1, use dynamic bus number */
if (bus_number_offset == -1) {
new_adapter->nr = -1;
} else {
new_adapter->nr = bus_number_offset + portid;
}
new_data = kzalloc(sizeof(*new_data), GFP_KERNEL);
if (!new_data) {
printk(KERN_ALERT "Cannot alloc i2c data for %s",
fpga_i2c_bus_dev[portid].calling_name);
kzfree(new_adapter);
return NULL;
}
new_data->portid = portid;
new_data->pca9548.master_bus = fpga_i2c_bus_dev[portid].master_bus;
new_data->pca9548.switch_addr = fpga_i2c_bus_dev[portid].switch_addr;
new_data->pca9548.channel = fpga_i2c_bus_dev[portid].channel;
strcpy(new_data->pca9548.calling_name, fpga_i2c_bus_dev[portid].calling_name);
snprintf(new_adapter->name, sizeof(new_adapter->name),
"SMBus I2C Adapter PortID: %s", new_data->pca9548.calling_name);
i2c_freq_base_reg = fpga_dev.data_base_addr + I2C_MASTER_FREQ_1;
iowrite8(0x07, i2c_freq_base_reg + (new_data->pca9548.master_bus - 1) * 0x100); // 0x07 400kHz
i2c_set_adapdata(new_adapter, new_data);
error = i2c_add_numbered_adapter(new_adapter);
if (error < 0) {
printk(KERN_ALERT "Cannot add i2c adapter %s", new_data->pca9548.calling_name);
kzfree(new_adapter);
kzfree(new_data);
return NULL;
}
return new_adapter;
};
/**
* Board info for QSFP/SFP+ eeprom.
* Note: Using sff8436 as I2C eeprom driver.
*/
static struct i2c_board_info sff8436_eeprom_info[] = {
{ I2C_BOARD_INFO("optoe1", 0x50) },
{ I2C_BOARD_INFO("optoe2", 0x50) },
};
static int seastone2_drv_probe(struct platform_device *pdev)
{
int ret = 0;
int portid_count;
uint8_t cpld1_version, cpld2_version;
uint16_t prev_i2c_switch = 0;
struct sff_device_data *sff_data;
/* The device class need to be instantiated before this function called */
BUG_ON(fpgafwclass == NULL);
fpga_data = devm_kzalloc(&pdev->dev, sizeof(struct seastone2_fpga_data),
GFP_KERNEL);
if (!fpga_data)
return -ENOMEM;
// Set default read address to VERSION
fpga_data->fpga_read_addr = fpga_dev.data_base_addr + FPGA_VERSION;
fpga_data->cpld1_read_addr = 0x00;
fpga_data->cpld2_read_addr = 0x00;
mutex_init(&fpga_data->fpga_lock);
for (ret = I2C_MASTER_CH_1 ; ret <= I2C_MASTER_CH_TOTAL; ret++) {
mutex_init(&fpga_i2c_master_locks[ret - 1]);
}
fpga = kobject_create_and_add("FPGA", &pdev->dev.kobj);
if (!fpga) {
kzfree(fpga_data);
return -ENOMEM;
}
ret = sysfs_create_group(fpga, &fpga_attr_grp);
if (ret != 0) {
printk(KERN_ERR "Cannot create FPGA sysfs attributes\n");
kobject_put(fpga);
kzfree(fpga_data);
return ret;
}
cpld1 = kobject_create_and_add("CPLD1", &pdev->dev.kobj);
if (!cpld1) {
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return -ENOMEM;
}
ret = sysfs_create_group(cpld1, &cpld1_attr_grp);
if (ret != 0) {
printk(KERN_ERR "Cannot create CPLD1 sysfs attributes\n");
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return ret;
}
cpld2 = kobject_create_and_add("CPLD2", &pdev->dev.kobj);
if (!cpld2) {
sysfs_remove_group(cpld1, &cpld1_attr_grp);
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return -ENOMEM;
}
ret = sysfs_create_group(cpld2, &cpld2_attr_grp);
if (ret != 0) {
printk(KERN_ERR "Cannot create CPLD2 sysfs attributes\n");
kobject_put(cpld2);
sysfs_remove_group(cpld1, &cpld1_attr_grp);
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return ret;
}
sff_dev = device_create(fpgafwclass, NULL, MKDEV(0, 0), NULL, "sff_device");
if (IS_ERR(sff_dev)) {
printk(KERN_ERR "Failed to create sff device\n");
sysfs_remove_group(cpld2, &cpld2_attr_grp);
kobject_put(cpld2);
sysfs_remove_group(cpld1, &cpld1_attr_grp);
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return PTR_ERR(sff_dev);
}
ret = sysfs_create_group(&sff_dev->kobj, &sff_led_test_grp);
if (ret != 0) {
printk(KERN_ERR "Cannot create SFF attributes\n");
device_destroy(fpgafwclass, MKDEV(0, 0));
sysfs_remove_group(cpld2, &cpld2_attr_grp);
kobject_put(cpld2);
sysfs_remove_group(cpld1, &cpld1_attr_grp);
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return ret;
}
ret = sysfs_create_link(&pdev->dev.kobj, &sff_dev->kobj, "SFF");
if (ret != 0) {
sysfs_remove_group(&sff_dev->kobj, &sff_led_test_grp);
device_destroy(fpgafwclass, MKDEV(0, 0));
sysfs_remove_group(cpld2, &cpld2_attr_grp);
kobject_put(cpld2);
sysfs_remove_group(cpld1, &cpld1_attr_grp);
kobject_put(cpld1);
sysfs_remove_group(fpga, &fpga_attr_grp);
kobject_put(fpga);
kzfree(fpga_data);
return ret;
}
for (portid_count = 0 ; portid_count < VIRTUAL_I2C_PORT_LENGTH ; portid_count++) {
fpga_data->i2c_adapter[portid_count] = seastone2_i2c_init(pdev, portid_count, VIRTUAL_I2C_BUS_OFFSET);
}
/* Init SFF devices */
for (portid_count = 0; portid_count < SFF_PORT_TOTAL; portid_count++) {
struct i2c_adapter *i2c_adap = fpga_data->i2c_adapter[portid_count];
if (i2c_adap) {
fpga_data->sff_devices[portid_count] = seastone2_sff_init(portid_count);
sff_data = dev_get_drvdata(fpga_data->sff_devices[portid_count]);
BUG_ON(sff_data == NULL);
if ( sff_data->port_type == QSFP ) {
fpga_data->sff_i2c_clients[portid_count] = i2c_new_device(i2c_adap, &sff8436_eeprom_info[0]);
} else {
fpga_data->sff_i2c_clients[portid_count] = i2c_new_device(i2c_adap, &sff8436_eeprom_info[1]);
}
sff_data = NULL;
sysfs_create_link(&fpga_data->sff_devices[portid_count]->kobj,
&fpga_data->sff_i2c_clients[portid_count]->dev.kobj,
"i2c");
}
}
printk(KERN_INFO "Virtual I2C buses created\n");
#ifdef TEST_MODE
return 0;
#endif
fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX], CPLD1_SLAVE_ADDR, 0x00,
I2C_SMBUS_READ, 0x00, I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&cpld1_version);
fpga_i2c_access(fpga_data->i2c_adapter[VIRTUAL_I2C_CPLD_INDEX], CPLD2_SLAVE_ADDR, 0x00,
I2C_SMBUS_READ, 0x00, I2C_SMBUS_BYTE_DATA, (union i2c_smbus_data*)&cpld2_version);
printk(KERN_INFO "CPLD1 VERSON: %2.2x\n", cpld1_version);
printk(KERN_INFO "CPLD2 VERSON: %2.2x\n", cpld2_version);
/* Init I2C buses that has PCA9548 switch device. */
for (portid_count = 0; portid_count < VIRTUAL_I2C_PORT_LENGTH; portid_count++) {
struct i2c_dev_data *dev_data;
unsigned char master_bus;
unsigned char switch_addr;
dev_data = i2c_get_adapdata(fpga_data->i2c_adapter[portid_count]);
master_bus = dev_data->pca9548.master_bus;
switch_addr = dev_data->pca9548.switch_addr;
if (switch_addr != 0xFF) {
if (prev_i2c_switch != ( (master_bus << 8) | switch_addr) ) {
// Found the bus with PCA9548, trying to clear all switch in it.
smbus_access(fpga_data->i2c_adapter[portid_count], switch_addr, 0x00,
I2C_SMBUS_WRITE, 0x00, I2C_SMBUS_BYTE, NULL);
prev_i2c_switch = ( master_bus << 8 ) | switch_addr;
}
}
}
return 0;
}
static int seastone2_drv_remove(struct platform_device *pdev)
{
int portid_count;
struct sff_device_data *rem_data;
for (portid_count = 0; portid_count < SFF_PORT_TOTAL; portid_count++) {
sysfs_remove_link(&fpga_data->sff_devices[portid_count]->kobj, "i2c");
i2c_unregister_device(fpga_data->sff_i2c_clients[portid_count]);
}
for (portid_count = 0 ; portid_count < VIRTUAL_I2C_PORT_LENGTH ; portid_count++) {
if (fpga_data->i2c_adapter[portid_count] != NULL) {
info(KERN_INFO "<%x>", fpga_data->i2c_adapter[portid_count]);
i2c_del_adapter(fpga_data->i2c_adapter[portid_count]);
}
}
for (portid_count = 0; portid_count < SFF_PORT_TOTAL; portid_count++) {
if (fpga_data->sff_devices[portid_count] != NULL) {
rem_data = dev_get_drvdata(fpga_data->sff_devices[portid_count]);
device_unregister(fpga_data->sff_devices[portid_count]);
put_device(fpga_data->sff_devices[portid_count]);
kfree(rem_data);
}
}
sysfs_remove_group(fpga, &fpga_attr_grp);
sysfs_remove_group(cpld1, &cpld1_attr_grp);
sysfs_remove_group(cpld2, &cpld2_attr_grp);
sysfs_remove_group(&sff_dev->kobj, &sff_led_test_grp);
kobject_put(fpga);
kobject_put(cpld1);
kobject_put(cpld2);
device_destroy(fpgafwclass, MKDEV(0, 0));
devm_kfree(&pdev->dev, fpga_data);
return 0;
}
static struct platform_driver seastone2_drv = {
.probe = seastone2_drv_probe,
.remove = __exit_p(seastone2_drv_remove),
.driver = {
.name = DRIVER_NAME,
},
};
#ifdef TEST_MODE
#define FPGA_PCI_BAR_NUM 2
#else
#define FPGA_PCI_BAR_NUM 0
#endif
static const struct pci_device_id fpga_id_table[] = {
{ PCI_VDEVICE(XILINX, FPGA_PCIE_DEVICE_ID) },
{ PCI_VDEVICE(TEST, TEST_PCIE_DEVICE_ID) },
{0, }
};
MODULE_DEVICE_TABLE(pci, fpga_id_table);
static int fpga_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err;
struct device *dev = &pdev->dev;
uint32_t fpga_version;
if ((err = pci_enable_device(pdev))) {
dev_err(dev, "pci_enable_device probe error %d for device %s\n",
err, pci_name(pdev));
return err;
}
if ((err = pci_request_regions(pdev, FPGA_PCI_NAME)) < 0) {
dev_err(dev, "pci_request_regions error %d\n", err);
goto pci_disable;
}
/* bar0: data mmio region */
fpga_dev.data_mmio_start = pci_resource_start(pdev, FPGA_PCI_BAR_NUM);
fpga_dev.data_mmio_len = pci_resource_len(pdev, FPGA_PCI_BAR_NUM);
fpga_dev.data_base_addr = pci_iomap(pdev, FPGA_PCI_BAR_NUM, 0);
if (!fpga_dev.data_base_addr) {
dev_err(dev, "cannot iomap region of size %lu\n",
(unsigned long)fpga_dev.data_mmio_len);
goto pci_release;
}
dev_info(dev, "data_mmio iomap base = 0x%lx \n",
(unsigned long)fpga_dev.data_base_addr);
dev_info(dev, "data_mmio_start = 0x%lx data_mmio_len = %lu\n",
(unsigned long)fpga_dev.data_mmio_start,
(unsigned long)fpga_dev.data_mmio_len);
printk(KERN_INFO "FPGA PCIe driver probe OK.\n");
printk(KERN_INFO "FPGA ioremap registers of size %lu\n", (unsigned long)fpga_dev.data_mmio_len);
printk(KERN_INFO "FPGA Virtual BAR %d at %8.8lx - %8.8lx\n", FPGA_PCI_BAR_NUM,
(unsigned long)fpga_dev.data_base_addr,
(unsigned long)(fpga_dev.data_base_addr + fpga_dev.data_mmio_len));
printk(KERN_INFO "");
fpga_version = ioread32(fpga_dev.data_base_addr);
printk(KERN_INFO "FPGA VERSION : %8.8x\n", fpga_version);
if ((err = fpgafw_init()) < 0) {
goto pci_unmap;
}
seastone2_dev = platform_device_register_simple(DRIVER_NAME, -1, NULL, 0);
platform_driver_register(&seastone2_drv);
return 0;
pci_unmap:
pci_iounmap(pdev, fpga_dev.data_base_addr);
pci_release:
pci_release_regions(pdev);
pci_disable:
pci_disable_device(pdev);
return -EBUSY;
}
static void fpga_pci_remove(struct pci_dev *pdev)
{
platform_driver_unregister(&seastone2_drv);
platform_device_unregister(seastone2_dev);
fpgafw_exit();
pci_iounmap(pdev, fpga_dev.data_base_addr);
pci_release_regions(pdev);
pci_disable_device(pdev);
printk(KERN_INFO "FPGA PCIe driver remove OK.\n");
};
static struct pci_driver pci_dev_ops = {
.name = FPGA_PCI_NAME,
.probe = fpga_pci_probe,
.remove = fpga_pci_remove,
.id_table = fpga_id_table,
};
enum {
READREG,
WRITEREG
};
struct fpga_reg_data {
uint32_t addr;
uint32_t value;
};
static long fpgafw_unlocked_ioctl(struct file *file, unsigned int cmd,
unsigned long arg) {
int ret = 0;
struct fpga_reg_data data;
mutex_lock(&fpga_data->fpga_lock);
#ifdef TEST_MODE
static uint32_t status_reg;
#endif
// Switch function to read and write.
switch (cmd) {
case READREG:
if (copy_from_user(&data, (void __user*)arg, sizeof(data)) != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EFAULT;
}
data.value = ioread32(fpga_dev.data_base_addr + data.addr);
if (copy_to_user((void __user*)arg , &data, sizeof(data)) != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EFAULT;
}
#ifdef TEST_MODE
if (data.addr == 0x1210) {
switch (status_reg) {
case 0x0000 : status_reg = 0x8000;
break;
case 0x8080 : status_reg = 0x80C0;
break;
case 0x80C0 : status_reg = 0x80F0;
break;
case 0x80F0 : status_reg = 0x80F8;
break;
}
iowrite32(status_reg, fpga_dev.data_base_addr + 0x1210);
}
#endif
break;
case WRITEREG:
if (copy_from_user(&data, (void __user*)arg, sizeof(data)) != 0) {
mutex_unlock(&fpga_data->fpga_lock);
return -EFAULT;
}
iowrite32(data.value, fpga_dev.data_base_addr + data.addr);
#ifdef TEST_MODE
if (data.addr == 0x1204) {
status_reg = 0x8080;
iowrite32(status_reg, fpga_dev.data_base_addr + 0x1210);
}
#endif
break;
default:
mutex_unlock(&fpga_data->fpga_lock);
return -EINVAL;
}
mutex_unlock(&fpga_data->fpga_lock);
return ret;
}
const struct file_operations fpgafw_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = fpgafw_unlocked_ioctl,
};
static int fpgafw_init(void) {
printk(KERN_INFO "Initializing the switchboard driver\n");
// Try to dynamically allocate a major number for the device -- more difficult but worth it
majorNumber = register_chrdev(0, DEVICE_NAME, &fpgafw_fops);
if (majorNumber < 0) {
printk(KERN_ALERT "Failed to register a major number\n");
return majorNumber;
}
printk(KERN_INFO "Device registered correctly with major number %d\n", majorNumber);
// Register the device class
fpgafwclass = class_create(THIS_MODULE, CLASS_NAME);
if (IS_ERR(fpgafwclass)) { // Check for error and clean up if there is
unregister_chrdev(majorNumber, DEVICE_NAME);
printk(KERN_ALERT "Failed to register device class\n");
return PTR_ERR(fpgafwclass);
}
printk(KERN_INFO "Device class registered correctly\n");
// Register the device driver
fpgafwdev = device_create(fpgafwclass, NULL, MKDEV(majorNumber, 0), NULL, DEVICE_NAME);
if (IS_ERR(fpgafwdev)) { // Clean up if there is an error
class_destroy(fpgafwclass); // Repeated code but the alternative is goto statements
unregister_chrdev(majorNumber, DEVICE_NAME);
printk(KERN_ALERT "Failed to create the FW upgrade device node\n");
return PTR_ERR(fpgafwdev);
}
printk(KERN_INFO "FPGA fw upgrade device node created correctly\n"); // Made it! device was initialized
return 0;
}
static void fpgafw_exit(void) {
device_destroy(fpgafwclass, MKDEV(majorNumber, 0)); // remove the device
class_destroy(fpgafwclass); // remove the device class
unregister_chrdev(majorNumber, DEVICE_NAME); // unregister the major number
printk(KERN_INFO "Goodbye!\n");
}
int seastone2_init(void)
{
int rc;
rc = pci_register_driver(&pci_dev_ops);
if (rc)
return rc;
return 0;
}
void seastone2_exit(void)
{
pci_unregister_driver(&pci_dev_ops);
}
module_init(seastone2_init);
module_exit(seastone2_exit);
MODULE_AUTHOR("Pradchaya P. <pphuhcar@celestica.com>");
MODULE_DESCRIPTION("Celestica Seastone2 switchboard driver");
MODULE_VERSION(MOD_VERSION);
MODULE_LICENSE("GPL");