ostinato/server/abstractport.cpp
Srivats P d17ab7ab42 Use TtagTimeInterval to determine ttag markers
This is for interlaved mode; sequential mode was already using it
2023-04-29 12:08:26 +05:30

1028 lines
32 KiB
C++

/*
Copyright (C) 2010-2012 Srivats P.
This file is part of "Ostinato"
This is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#include "abstractport.h"
#include "../common/abstractprotocol.h"
#include "../common/framevalueattrib.h"
#include "../common/streambase.h"
#include "devicemanager.h"
#include "interfaceinfo.h"
#include "packetbuffer.h"
#include "streamtiming.h"
#include <QString>
#include <QIODevice>
#include <limits.h>
#include <math.h>
AbstractPort::AbstractPort(int id, const char *device)
{
isUsable_ = true;
data_.mutable_port_id()->set_id(id);
data_.set_name(device);
//! \todo (LOW) admin enable/disable of port
data_.set_is_enabled(true);
data_.set_is_exclusive_control(false);
isSendQueueDirty_ = false;
rateAccuracy_ = kHighAccuracy;
linkState_ = OstProto::LinkStateUnknown;
minPacketSetSize_ = 1;
deviceManager_ = new DeviceManager(this);
interfaceInfo_ = NULL;
maxStatsValue_ = ULLONG_MAX; // assume 64-bit stats
memset((void*) &stats_, 0, sizeof(stats_));
resetStats();
streamTiming_ = StreamTiming::instance();
}
AbstractPort::~AbstractPort()
{
delete deviceManager_;
delete interfaceInfo_;
}
void AbstractPort::init()
{
if (interfaceInfo_) {
data_.set_speed(interfaceInfo_->speed);
data_.set_mtu(interfaceInfo_->mtu);
}
if (deviceManager_)
deviceManager_->createHostDevices();
}
/*! Can we modify Port with these params? Should modify cause port dirty? */
bool AbstractPort::canModify(const OstProto::Port &port, bool *dirty)
{
bool allow = true;
*dirty = false;
if (port.has_transmit_mode()
&& (port.transmit_mode() != data_.transmit_mode())) {
*dirty = true;
allow = !isTransmitOn();
}
if (port.has_is_tracking_stream_stats()
&& (port.is_tracking_stream_stats()
!= data_.is_tracking_stream_stats())) {
*dirty = true;
allow = !isTransmitOn();
}
if (*dirty)
isSendQueueDirty_ = true;
return allow;
}
bool AbstractPort::modify(const OstProto::Port &port)
{
bool ret = true;
//! \todo Use reflection to find out which fields are set
if (port.has_user_description()) {
data_.set_user_description(port.user_description());
}
if (port.has_is_exclusive_control())
{
bool val = port.is_exclusive_control();
ret = setExclusiveControl(val);
if (ret)
data_.set_is_exclusive_control(val);
}
if (port.has_transmit_mode())
data_.set_transmit_mode(port.transmit_mode());
if (port.has_is_tracking_stream_stats())
ret |= setTrackStreamStats(port.is_tracking_stream_stats());
if (port.has_user_name()) {
data_.set_user_name(port.user_name());
}
return ret;
}
DeviceManager* AbstractPort::deviceManager()
{
return deviceManager_;
}
StreamBase* AbstractPort::streamAtIndex(int index)
{
Q_ASSERT(index < streamList_.size());
return streamList_.at(index);
}
StreamBase* AbstractPort::stream(int streamId)
{
for (int i = 0; i < streamList_.size(); i++)
{
if ((uint)streamId == streamList_.at(i)->id())
return streamList_.at(i);
}
return NULL;
}
bool AbstractPort::addStream(StreamBase *stream)
{
streamList_.append(stream);
isSendQueueDirty_ = true;
return true;
}
bool AbstractPort::deleteStream(int streamId)
{
for (int i = 0; i < streamList_.size(); i++)
{
StreamBase *stream;
if ((uint)streamId == streamList_.at(i)->id())
{
stream = streamList_.takeAt(i);
delete stream;
isSendQueueDirty_ = true;
return true;
}
}
return false;
}
void AbstractPort::addNote(QString note)
{
QString notes = QString::fromStdString(data_.notes());
note.prepend("<li>");
note.append("</li>");
if (notes.isEmpty())
notes="<b>Limitation(s)</b><ul>";
else
notes.remove("</ul>");
notes.append(note);
notes.append("</ul>");
data_.set_notes(notes.toStdString());
}
bool AbstractPort::setTrackStreamStats(bool enable)
{
if (enable)
streamTiming_->start(id());
else
streamTiming_->stop(id());
data_.set_is_tracking_stream_stats(enable);
return true;
}
AbstractPort::Accuracy AbstractPort::rateAccuracy()
{
return rateAccuracy_;
}
bool AbstractPort::setRateAccuracy(Accuracy accuracy)
{
rateAccuracy_ = accuracy;
return true;
}
int AbstractPort::updatePacketList()
{
switch(data_.transmit_mode())
{
case OstProto::kSequentialTransmit:
return updatePacketListSequential();
break;
case OstProto::kInterleavedTransmit:
return updatePacketListInterleaved();
break;
default:
Q_ASSERT(false); // Unreachable!!!
break;
}
return 0;
}
int AbstractPort::updatePacketListSequential()
{
quint64 duration = 0; // in nanosec
quint64 totalPkts = 0;
QList<uint> ttagMarkers;
FrameValueAttrib packetListAttrib;
long sec = 0;
long nsec = 0;
qDebug("In %s", __FUNCTION__);
// First sort the streams by ordinalValue
std::sort(streamList_.begin(), streamList_.end(), StreamBase::StreamLessThan);
clearPacketList();
for (int i = 0; i < streamList_.size(); i++)
{
if (streamList_[i]->isEnabled())
{
int len = 0;
ulong n, x, y;
ulong burstSize;
double ibg = 0;
quint64 ibg1 = 0, ibg2 = 0;
quint64 nb1 = 0, nb2 = 0;
double ipg = 0;
quint64 ipg1 = 0, ipg2 = 0;
quint64 npx1 = 0, npx2 = 0;
quint64 npy1 = 0, npy2 = 0;
quint64 loopDelay;
ulong frameVariableCount = streamList_[i]->frameVariableCount();
bool hasTtag = streamList_[i]->hasProtocol(
OstProto::Protocol::kSignFieldNumber);
// We derive n, x, y such that
// n * x + y = total number of packets to be sent
switch (streamList_[i]->sendUnit())
{
case StreamBase::e_su_bursts:
burstSize = streamList_[i]->burstSize();
x = AbstractProtocol::lcm(frameVariableCount, burstSize);
n = ulong(burstSize * streamList_[i]->numBursts()) / x;
y = ulong(burstSize * streamList_[i]->numBursts()) % x;
if (streamList_[i]->burstRate() > 0)
{
ibg = 1e9/double(streamList_[i]->burstRate());
ibg1 = quint64(ceil(ibg));
ibg2 = quint64(floor(ibg));
nb1 = quint64((ibg - double(ibg2)) * double(x));
nb2 = x - nb1;
}
loopDelay = ibg2;
break;
case StreamBase::e_su_packets:
x = frameVariableCount;
n = 2;
while (x < minPacketSetSize_)
x = frameVariableCount*n++;
n = streamList_[i]->numPackets() / x;
y = streamList_[i]->numPackets() % x;
burstSize = x + y;
if (streamList_[i]->packetRate() > 0)
{
ipg = 1e9/double(streamList_[i]->packetRate());
ipg1 = quint64(ceil(ipg));
ipg2 = quint64(floor(ipg));
npx1 = quint64((ipg - double(ipg2)) * double(x));
npx2 = x - npx1;
npy1 = quint64((ipg - double(ipg2)) * double(y));
npy2 = y - npy1;
}
loopDelay = ipg2;
break;
default:
qWarning("Unhandled stream control unit %d",
streamList_[i]->sendUnit());
continue;
}
qDebug("\nframeVariableCount = %lu", frameVariableCount);
qDebug("n = %lu, x = %lu, y = %lu, burstSize = %lu",
n, x, y, burstSize);
qDebug("ibg = %g", ibg);
qDebug("ibg1 = %llu", ibg1);
qDebug("nb1 = %llu", nb1);
qDebug("ibg2 = %llu", ibg2);
qDebug("nb2 = %llu\n", nb2);
qDebug("ipg = %g", ipg);
qDebug("ipg1 = %llu", ipg1);
qDebug("npx1 = %llu", npx1);
qDebug("npy1 = %llu", npy1);
qDebug("ipg2 = %llu", ipg2);
qDebug("npx2 = %llu", npx2);
qDebug("npy2 = %llu\n", npy2);
if (n >= 1) {
loopNextPacketSet(x, n, 0, loopDelay);
qDebug("PacketSet: n = %lu, x = %lu", n, x);
}
else if (n == 0)
x = 0;
quint64 pktCount = n*x + y;
for (uint j = 0; j < (x+y); j++)
{
if (j == 0 || frameVariableCount > 1)
{
FrameValueAttrib attrib;
len = streamList_[i]->frameValue(
pktBuf_, sizeof(pktBuf_), j, &attrib);
packetListAttrib += attrib;
}
if (len <= 0)
continue;
// Create a packet set for 'y' with repeat = 1
if (j == x) {
loopNextPacketSet(y, 1, 0, loopDelay);
qDebug("PacketSet: n = 1, y = %lu", y);
}
qDebug("q(%d, %d) sec = %lu nsec = %lu",
i, j, sec, nsec);
if (!appendToPacketList(sec, nsec, pktBuf_, len)) {
clearPacketList(); // don't leave it half baked/inconsitent
packetListAttrib.errorFlags |= FrameValueAttrib::OutOfMemoryError;
goto _out_of_memory;
}
if ((j > 0) && (((j+1) % burstSize) == 0))
{
nsec += (j < nb1) ? ibg1 : ibg2;
while (nsec >= long(1e9))
{
sec++;
nsec -= long(1e9);
}
}
else
{
if (j < x)
nsec += (j < npx1) ? ipg1 : ipg2;
else
nsec += ((j-x) < npy1) ? ipg1 : ipg2;
while (nsec >= long(1e9))
{
sec++;
nsec -= long(1e9);
}
}
}
// Add a Ttag marker after every kTtagTimeInterval_ worth of pkts
if (hasTtag) {
uint ttagPktInterval = kTtagTimeInterval_*1e9/loopDelay;
for (uint k = 0; k < pktCount; k += ttagPktInterval)
ttagMarkers.append(totalPkts + k);
}
totalPkts += pktCount;
duration += pktCount*loopDelay; // in nanosecs
switch(streamList_[i]->nextWhat())
{
case StreamBase::e_nw_stop:
goto _stop_no_more_pkts;
case StreamBase::e_nw_goto_id:
/*! \todo (MED): define and use
streamList_[i].d.control().goto_stream_id(); */
/*! \todo (MED): assumes goto Id is less than current!!!!
To support goto to any id, do
if goto_id > curr_id then
i = goto_id;
goto restart;
else
returnToQIdx = 0;
*/
setPacketListLoopMode(true, 0,
streamList_[i]->sendUnit() ==
StreamBase::e_su_bursts ? ibg1 : ipg1);
goto _stop_no_more_pkts;
case StreamBase::e_nw_goto_next:
break;
default:
qFatal("---------- %s: Unhandled case (%d) -----------",
__FUNCTION__, streamList_[i]->nextWhat() );
break;
}
} // if (stream is enabled)
} // for (numStreams)
_out_of_memory:
_stop_no_more_pkts:
// See comments in updatePacketListInterleaved() for calc explanation
setPacketListTtagMarkers(ttagMarkers, ttagMarkers.isEmpty() ? 0 :
qMax(uint(kTtagTimeInterval_*1e9/(duration)),
1U) * totalPkts);
isSendQueueDirty_ = false;
qDebug("PacketListAttrib = %x",
static_cast<int>(packetListAttrib.errorFlags));
return static_cast<int>(packetListAttrib.errorFlags);
}
int AbstractPort::updatePacketListInterleaved()
{
FrameValueAttrib packetListAttrib;
int numStreams = 0;
quint64 minGap = ULLONG_MAX;
quint64 duration = quint64(1e3); // 1000ns (1us)
// TODO: convert the below to a QVector of struct aggregating all list vars
QList<int> streamId;
QList<quint64> ibg1, ibg2;
QList<quint64> nb1, nb2;
QList<quint64> ipg1, ipg2;
QList<quint64> np1, np2;
QList<ulong> schedSec, schedNsec;
QList<ulong> pktCount, burstCount;
QList<ulong> burstSize;
QList<bool> isVariable;
QList<bool> hasTtag;
QList<QByteArray> pktBuf;
QList<ulong> pktLen;
int activeStreamCount = 0;
qDebug("In %s", __FUNCTION__);
clearPacketList();
for (int i = 0; i < streamList_.size(); i++)
{
if (streamList_[i]->isEnabled())
activeStreamCount++;
}
if (activeStreamCount == 0)
{
isSendQueueDirty_ = false;
return 0;
}
// First sort the streams by ordinalValue
std::sort(streamList_.begin(), streamList_.end(), StreamBase::StreamLessThan);
// FIXME: we are calculating n[bp][12], i[bp]g[12] for a duration of 1sec;
// this was fine when the actual packet list duration was also 1sec. But
// in the current code (post Turbo changes), the latter can be different!
for (int i = 0; i < streamList_.size(); i++)
{
if (!streamList_[i]->isEnabled())
continue;
streamId.append(i);
double numBursts = 0;
double numPackets = 0;
quint64 _burstSize = 0;
double ibg = 0;
quint64 _ibg1 = 0, _ibg2 = 0;
quint64 _nb1 = 0, _nb2 = 0;
double ipg = 0;
quint64 _ipg1 = 0, _ipg2 = 0;
quint64 _np1 = 0, _np2 = 0;
switch (streamList_[i]->sendUnit())
{
case StreamBase::e_su_bursts:
numBursts = streamList_[i]->burstRate();
_burstSize = streamList_[i]->burstSize();
if (streamList_[i]->burstRate() > 0)
{
ibg = 1e9/double(streamList_[i]->burstRate());
_ibg1 = quint64(ceil(ibg));
_ibg2 = quint64(floor(ibg));
_nb1 = quint64((ibg - double(_ibg2)) * double(numBursts));
_nb2 = quint64(numBursts) - _nb1;
}
break;
case StreamBase::e_su_packets:
numPackets = streamList_[i]->packetRate();
_burstSize = 1;
if (streamList_[i]->packetRate() > 0)
{
ipg = 1e9/double(streamList_[i]->packetRate());
_ipg1 = llrint(ceil(ipg));
_ipg2 = quint64(floor(ipg));
_np1 = quint64((ipg - double(_ipg2)) * double(numPackets));
_np2 = quint64(numPackets) - _np1;
}
break;
default:
qWarning("Unhandled stream control unit %d",
streamList_[i]->sendUnit());
continue;
}
qDebug("numBursts = %g, numPackets = %g\n", numBursts, numPackets);
qDebug("ibg = %g", ibg);
qDebug("ibg1 = %llu", _ibg1);
qDebug("nb1 = %llu", _nb1);
qDebug("ibg2 = %llu", _ibg2);
qDebug("nb2 = %llu\n", _nb2);
qDebug("ipg = %g", ipg);
qDebug("ipg1 = %llu", _ipg1);
qDebug("np1 = %llu", _np1);
qDebug("ipg2 = %llu", _ipg2);
qDebug("np2 = %llu\n", _np2);
if (_ibg2 && (_ibg2 < minGap))
minGap = _ibg2;
if (_ibg1 && (_ibg1 > duration))
duration = _ibg1;
ibg1.append(_ibg1);
ibg2.append(_ibg2);
nb1.append(_nb1);
nb2.append(_nb1);
burstSize.append(_burstSize);
if (_ipg2 && (_ipg2 < minGap))
minGap = _ipg2;
if (_np1)
{
if (_ipg1 && (_ipg1 > duration))
duration = _ipg1;
}
else
{
if (_ipg2 && (_ipg2 > duration))
duration = _ipg2;
}
ipg1.append(_ipg1);
ipg2.append(_ipg2);
np1.append(_np1);
np2.append(_np1);
schedSec.append(0);
schedNsec.append(0);
pktCount.append(0);
burstCount.append(0);
if (streamList_[i]->isFrameVariable())
{
isVariable.append(true);
pktBuf.append(QByteArray());
pktLen.append(0);
}
else
{
FrameValueAttrib attrib;
isVariable.append(false);
pktBuf.append(QByteArray());
pktBuf.last().resize(kMaxPktSize);
pktLen.append(streamList_[i]->frameValue(
(uchar*)pktBuf.last().data(), pktBuf.last().size(),
0, &attrib));
packetListAttrib += attrib;
}
hasTtag.append(streamList_[i]->hasProtocol(
OstProto::Protocol::kSignFieldNumber));
numStreams++;
} // for i
// handle burst/packet rate = 0
// i.e. send all streams "simultaneously" as fast as possible
// as a result all streams will be at the same rate e.g. for 2 streams,
// it would 50% each; for 3 streams - all at 33.3% and so on
if (minGap == ULLONG_MAX) {
minGap = 1;
duration = 1;
}
qDebug("minGap = %llu", minGap);
qDebug("duration = %llu", duration);
if (duration < minGap*100) {
duration = minGap*100;
qDebug("increase duration to %llu for better accuracy", duration);
}
uchar* buf;
int len;
const quint64 durSec = duration/ulong(1e9);
const quint64 durNsec = duration % ulong(1e9);
quint64 sec = 0;
quint64 nsec = 0;
quint64 lastPktTxSec = 0;
quint64 lastPktTxNsec = 0;
// Count total packets we are going to add, so that we can create
// an explicit packet set first
// TODO: Find less expensive way to do this counting
// FIXME: Turbo still thinks it has to create implicit packet set for
// interleaved mode - Turbo code should be changed once this is validated
quint64 totalPkts = 0;
QVector<ulong> ttagSchedSec(numStreams, 0);
QVector<ulong> ttagSchedNsec(numStreams, 0);
QList<uint> ttagMarkers;
do
{
for (int i = 0; i < numStreams; i++)
{
// If a packet is not scheduled yet, look at the next stream
if ((schedSec.at(i) > sec) || (schedNsec.at(i) > nsec))
continue;
// Ttag marker every TtagTimeInterval for each stream
if (hasTtag.at(i)
&& ((schedSec.at(i) > ttagSchedSec.at(i))
|| ((schedSec.at(i) == ttagSchedSec.at(i))
&& (schedNsec.at(i) >= ttagSchedNsec.at(i))))) {
ttagMarkers.append(totalPkts);
ttagSchedSec[i] = schedSec.at(i) + kTtagTimeInterval_;
ttagSchedNsec[i] = schedNsec.at(i);
}
for (uint j = 0; j < burstSize[i]; j++)
{
pktCount[i]++;
schedNsec[i] += (pktCount.at(i) < np1.at(i)) ?
ipg1.at(i) : ipg2.at(i);
while (schedNsec.at(i) >= 1e9)
{
schedSec[i]++;
schedNsec[i] -= long(1e9);
}
lastPktTxSec = sec;
lastPktTxNsec = nsec;
totalPkts++;
}
burstCount[i]++;
schedNsec[i] += (burstCount.at(i) < nb1.at(i)) ?
ibg1.at(i) : ibg2.at(i);
while (schedNsec.at(i) >= 1e9)
{
schedSec[i]++;
schedNsec[i] -= long(1e9);
}
}
nsec += minGap;
while (nsec >= 1e9)
{
sec++;
nsec -= long(1e9);
}
} while ((sec < durSec) || ((sec == durSec) && (nsec < durNsec)));
// XXX: Ideally, for interleaved mode, we have a single packet set and
// the set's delay should be 0.
// However, Ttag and Turbo both use the set delay field to derive
// the set's avg pps (needed for their own functionality), so we set the
// avgDelay here instead of 0.
long avgDelay = (lastPktTxSec*long(1e9) + lastPktTxNsec
+ (durSec - lastPktTxSec)*long(1e9)
+ (durNsec - lastPktTxNsec))
/totalPkts;
loopNextPacketSet(totalPkts, 1, 0, avgDelay);
qDebug("Interleaved PacketSet of size %lld, duration %llu.%09llu "
"repeat 1 and avg delay %ldns",
totalPkts, durSec, durNsec, avgDelay);
// Reset working sched/counts before building the packet list
sec = nsec = 0;
lastPktTxSec = lastPktTxNsec = 0;
for (int i = 0; i < numStreams; i++)
{
schedSec[i] = 0;
schedNsec[i] = 0;
pktCount[i] = 0;
burstCount[i] = 0;
}
// Now build the packet list
do
{
for (int i = 0; i < numStreams; i++)
{
// If a packet is not scheduled yet, look at the next stream
if ((schedSec.at(i) > sec) || (schedNsec.at(i) > nsec))
continue;
for (uint j = 0; j < burstSize[i]; j++)
{
if (isVariable.at(i))
{
FrameValueAttrib attrib;
buf = pktBuf_;
len = streamList_[streamId.at(i)]->frameValue(pktBuf_, sizeof(pktBuf_),
pktCount[i], &attrib);
packetListAttrib += attrib;
}
else
{
buf = (uchar*) pktBuf.at(i).data();
len = pktLen.at(i);
}
if (len <= 0)
continue;
qDebug("q(%d) TS = %llu.%09llu", i, sec, nsec);
if (!appendToPacketList(sec, nsec, buf, len)) {
clearPacketList(); // don't leave it half baked/inconsitent
packetListAttrib.errorFlags |= FrameValueAttrib::OutOfMemoryError;
goto _out_of_memory;
}
lastPktTxSec = sec;
lastPktTxNsec = nsec;
pktCount[i]++;
schedNsec[i] += (pktCount.at(i) < np1.at(i)) ?
ipg1.at(i) : ipg2.at(i);
while (schedNsec.at(i) >= 1e9)
{
schedSec[i]++;
schedNsec[i] -= long(1e9);
}
}
burstCount[i]++;
schedNsec[i] += (burstCount.at(i) < nb1.at(i)) ?
ibg1.at(i) : ibg2.at(i);
while (schedNsec.at(i) >= 1e9)
{
schedSec[i]++;
schedNsec[i] -= long(1e9);
}
}
nsec += minGap;
while (nsec >= 1e9)
{
sec++;
nsec -= long(1e9);
}
} while ((sec < durSec) || ((sec == durSec) && (nsec < durNsec)));
{
qint64 delaySec = durSec - lastPktTxSec;
qint64 delayNsec = durNsec - lastPktTxNsec;
while (delayNsec < 0)
{
delayNsec += long(1e9);
delaySec--;
}
qDebug("loop Delay = %lld.%09lld", delaySec, delayNsec);
setPacketListLoopMode(true, delaySec, delayNsec);
}
// XXX: TTag repeat interval calculation:
// CASE 1. pktListDuration < kTtagTimeInterval:
// e.g. if pktListDuration is 1sec and TtagTimerInterval is 5s, we
// skip 5 times total packets before we repeat the markers
// CASE 2. pktListDuration > kTtagTimeInterval:
// e.g. if pktListDuration is 7sec and TtagTimerInterval is 5s, we
// skip repeat markers every pktList iteration
setPacketListTtagMarkers(ttagMarkers, ttagMarkers.isEmpty() ? 0 :
qMax(uint(kTtagTimeInterval_*1e9
/(durSec*1e9+durNsec)),
1U) * totalPkts);
_out_of_memory:
isSendQueueDirty_ = false;
qDebug("PacketListAttrib = %x",
static_cast<int>(packetListAttrib.errorFlags));
return static_cast<int>(packetListAttrib.errorFlags);
}
void AbstractPort::stats(PortStats *stats)
{
stats->rxPkts = (stats_.rxPkts >= epochStats_.rxPkts) ?
stats_.rxPkts - epochStats_.rxPkts :
stats_.rxPkts + (maxStatsValue_ - epochStats_.rxPkts);
stats->rxBytes = (stats_.rxBytes >= epochStats_.rxBytes) ?
stats_.rxBytes - epochStats_.rxBytes :
stats_.rxBytes + (maxStatsValue_ - epochStats_.rxBytes);
stats->rxPps = stats_.rxPps;
stats->rxBps = stats_.rxBps;
stats->txPkts = (stats_.txPkts >= epochStats_.txPkts) ?
stats_.txPkts - epochStats_.txPkts :
stats_.txPkts + (maxStatsValue_ - epochStats_.txPkts);
stats->txBytes = (stats_.txBytes >= epochStats_.txBytes) ?
stats_.txBytes - epochStats_.txBytes :
stats_.txBytes + (maxStatsValue_ - epochStats_.txBytes);
stats->txPps = stats_.txPps;
stats->txBps = stats_.txBps;
stats->rxDrops = (stats_.rxDrops >= epochStats_.rxDrops) ?
stats_.rxDrops - epochStats_.rxDrops :
stats_.rxDrops + (maxStatsValue_ - epochStats_.rxDrops);
stats->rxErrors = (stats_.rxErrors >= epochStats_.rxErrors) ?
stats_.rxErrors - epochStats_.rxErrors :
stats_.rxErrors + (maxStatsValue_ - epochStats_.rxErrors);
stats->rxFifoErrors = (stats_.rxFifoErrors >= epochStats_.rxFifoErrors) ?
stats_.rxFifoErrors - epochStats_.rxFifoErrors :
stats_.rxFifoErrors + (maxStatsValue_ - epochStats_.rxFifoErrors);
stats->rxFrameErrors = (stats_.rxFrameErrors >= epochStats_.rxFrameErrors) ?
stats_.rxFrameErrors - epochStats_.rxFrameErrors :
stats_.rxFrameErrors + (maxStatsValue_ - epochStats_.rxFrameErrors);
}
quint64 AbstractPort::streamTimingDelay(uint guid)
{
return streamTiming_->delay(id(), guid);
}
void AbstractPort::clearStreamTiming(uint guid)
{
streamTiming_->clear(id(), guid);
}
void AbstractPort::streamStats(uint guid, OstProto::StreamStatsList *stats)
{
// In case stats are being maintained elsewhere
updateStreamStats();
if (streamStats_.contains(guid))
{
StreamStatsTuple sst = streamStats_.value(guid);
OstProto::StreamStats *s = stats->add_stream_stats();
s->mutable_stream_guid()->set_id(guid);
s->mutable_port_id()->set_id(id());
s->set_tx_duration(lastTransmitDuration());
s->set_latency(streamTimingDelay(guid));
s->set_tx_pkts(sst.tx_pkts);
s->set_tx_bytes(sst.tx_bytes);
s->set_rx_pkts(sst.rx_pkts);
s->set_rx_bytes(sst.rx_bytes);
}
}
void AbstractPort::streamStatsAll(OstProto::StreamStatsList *stats)
{
// In case stats are being maintained elsewhere
updateStreamStats();
// FIXME: change input param to a non-OstProto type and/or have
// a getFirst/Next like API?
double txDur = lastTransmitDuration();
StreamStatsIterator i(streamStats_);
while (i.hasNext())
{
i.next();
StreamStatsTuple sst = i.value();
OstProto::StreamStats *s = stats->add_stream_stats();
s->mutable_stream_guid()->set_id(i.key());
s->mutable_port_id()->set_id(id());
s->set_tx_duration(txDur);
s->set_latency(streamTimingDelay(i.key()));
s->set_tx_pkts(sst.tx_pkts);
s->set_tx_bytes(sst.tx_bytes);
s->set_rx_pkts(sst.rx_pkts);
s->set_rx_bytes(sst.rx_bytes);
}
}
void AbstractPort::resetStreamStats(uint guid)
{
streamStats_.remove(guid);
clearStreamTiming(guid);
}
void AbstractPort::resetStreamStatsAll()
{
streamStats_.clear();
clearStreamTiming();
}
void AbstractPort::clearDeviceNeighbors()
{
deviceManager_->clearDeviceNeighbors();
isSendQueueDirty_ = true;
}
void AbstractPort::resolveDeviceNeighbors()
{
// For a user triggered 'Resolve Neighbors', the behaviour we want is
// IP not in cache - send ARP/NDP request
// IP present in cache, but unresolved - re-send ARP/NDP request
// IP present in cache and resolved - don't sent ARP/NDP
//
// Device does not resend ARP/NDP requests if the IP address is
// already present in the cache, irrespective of whether it is
// resolved or not (this is done to avoid sending duplicate requests).
//
// So, to get the behaviour we want, let's clear all unresolved neighbors
// before calling resolve
deviceManager_->clearDeviceNeighbors(Device::kUnresolvedNeighbors);
// Resolve gateway for each device first ...
deviceManager_->resolveDeviceGateways();
// ... then resolve neighbor for each unique frame of each stream
// NOTE:
// 1. All the frames may have the same destination ip,but may have
// different source ip so may belong to a different emulated device;
// so we cannot optimize and send only one ARP
// 2. For a unidirectional stream, at egress, this will create ARP
// entries on the DUT for each of the source addresses
//
// TODO(optimization): Identify if stream does not vary in srcIp or dstIp
// - in which case resolve for only one frame of the stream
for (int i = 0; i < streamList_.size(); i++)
{
const StreamBase *stream = streamList_.at(i);
int frameCount = stream->frameVariableCount();
for (int j = 0; j < frameCount; j++) {
// we need the packet contents only uptil the L3 header
int pktLen = stream->frameValue(pktBuf_, kMaxL3PktSize, j);
if (pktLen) {
PacketBuffer pktBuf(pktBuf_, pktLen);
deviceManager_->resolveDeviceNeighbor(&pktBuf);
}
}
}
isSendQueueDirty_ = true;
}
quint64 AbstractPort::deviceMacAddress(int streamId, int frameIndex)
{
// we need the packet contents only uptil the L3 header
StreamBase *s = stream(streamId);
int pktLen = s->frameValue(pktBuf_, kMaxL3PktSize, frameIndex);
if (pktLen) {
PacketBuffer pktBuf(pktBuf_, pktLen);
return deviceManager_->deviceMacAddress(&pktBuf);
}
return 0;
}
quint64 AbstractPort::neighborMacAddress(int streamId, int frameIndex)
{
// we need the packet contents only uptil the L3 header
StreamBase *s = stream(streamId);
int pktLen = s->frameValue(pktBuf_, kMaxL3PktSize, frameIndex);
if (pktLen) {
PacketBuffer pktBuf(pktBuf_, pktLen);
return deviceManager_->neighborMacAddress(&pktBuf);
}
return 0;
}
const InterfaceInfo* AbstractPort::interfaceInfo() const
{
return interfaceInfo_;
}