This repository has been archived on 2025-03-20. You can view files and clone it, but cannot push or open issues or pull requests.
The-Powder-Toy/src/simulation/Simulation.cpp
2023-09-20 07:16:28 +02:00

4093 lines
114 KiB
C++

#include "Simulation.h"
#include "Air.h"
#include "ElementClasses.h"
#include "gravity/Gravity.h"
#include "ToolClasses.h"
#include "SimulationData.h"
#include "GOLString.h"
#include "client/GameSave.h"
#include "common/tpt-compat.h"
#include "common/tpt-rand.h"
#include "common/tpt-thread-local.h"
#include "gui/game/Brush.h"
#include <iostream>
#include <set>
extern int Element_PPIP_ppip_changed;
extern int Element_LOLZ_RuleTable[9][9];
extern int Element_LOLZ_lolz[XRES/9][YRES/9];
extern int Element_LOVE_RuleTable[9][9];
extern int Element_LOVE_love[XRES/9][YRES/9];
void Simulation::Load(const GameSave *save, bool includePressure, Vec2<int> blockP) // block coordinates
{
auto partP = blockP * CELL;
unsigned int pmapmask = (1<<save->pmapbits)-1;
int partMap[PT_NUM];
for(int i = 0; i < PT_NUM; i++)
{
partMap[i] = i;
}
if(save->palette.size())
{
for(auto &pi : save->palette)
{
if (pi.second > 0 && pi.second < PT_NUM)
{
int myId = 0;
for (int i = 0; i < PT_NUM; i++)
{
if (elements[i].Enabled && elements[i].Identifier == pi.first)
myId = i;
}
// if this is a custom element, set the ID to the ID we found when comparing identifiers in the palette map
// set type to 0 if we couldn't find an element with that identifier present when loading,
// unless this is a default element, in which case keep the current ID, because otherwise when an element is renamed it wouldn't show up anymore in older saves
if (myId != 0 || !pi.first.BeginsWith("DEFAULT_PT_"))
partMap[pi.second] = myId;
}
}
}
RecalcFreeParticles(false);
auto &possiblyCarriesType = Particle::PossiblyCarriesType();
auto &properties = Particle::GetProperties();
std::map<unsigned int, unsigned int> soapList;
for (int n = 0; n < NPART && n < save->particlesCount; n++)
{
Particle tempPart = save->particles[n];
if (tempPart.type <= 0 || tempPart.type >= PT_NUM)
{
continue;
}
tempPart.x += (float)partP.X;
tempPart.y += (float)partP.Y;
int x = int(tempPart.x + 0.5f);
int y = int(tempPart.y + 0.5f);
// Check various scenarios where we are unable to spawn the element, and set type to 0 to block spawning later
if (!InBounds(x, y))
{
continue;
}
tempPart.type = partMap[tempPart.type];
for (auto index : possiblyCarriesType)
{
if (elements[tempPart.type].CarriesTypeIn & (1U << index))
{
auto *prop = reinterpret_cast<int *>(reinterpret_cast<char *>(&tempPart) + properties[index].Offset);
auto carriedType = *prop & int(pmapmask);
auto extra = *prop >> save->pmapbits;
if (carriedType >= 0 && carriedType < PT_NUM)
{
carriedType = partMap[carriedType];
}
*prop = PMAP(extra, carriedType);
}
}
// Ensure we can spawn this element
if ((player.spwn == 1 && tempPart.type==PT_STKM) || (player2.spwn == 1 && tempPart.type==PT_STKM2))
{
continue;
}
if ((tempPart.type == PT_SPAWN || tempPart.type == PT_SPAWN2) && elementCount[tempPart.type])
{
continue;
}
bool Element_FIGH_CanAlloc(Simulation *sim);
if (tempPart.type == PT_FIGH && !Element_FIGH_CanAlloc(this))
{
continue;
}
if (!elements[tempPart.type].Enabled)
{
continue;
}
// Mark location to be cleaned of existing particles.
pmap[y][x] = -1;
if (elements[tempPart.type].CreateAllowed)
{
if (!(*(elements[tempPart.type].CreateAllowed))(this, -3, int(tempPart.x + 0.5f), int(tempPart.y + 0.5f), tempPart.type))
{
continue;
}
}
// Allocate particle (this location is guaranteed to be empty due to "full scan" logic above)
if (pfree == -1)
break;
auto i = pfree;
pfree = parts[i].life;
if (i > parts_lastActiveIndex)
parts_lastActiveIndex = i;
parts[i] = tempPart;
elementCount[tempPart.type]++;
void Element_STKM_init_legs(Simulation * sim, playerst *playerp, int i);
switch (parts[i].type)
{
case PT_STKM:
Element_STKM_init_legs(this, &player, i);
player.spwn = 1;
player.elem = PT_DUST;
if ((save->majorVersion < 93 && parts[i].ctype == SPC_AIR) ||
(save->majorVersion < 88 && parts[i].ctype == OLD_SPC_AIR))
{
player.fan = true;
}
if (save->stkm.rocketBoots1)
player.rocketBoots = true;
if (save->stkm.fan1)
player.fan = true;
break;
case PT_STKM2:
Element_STKM_init_legs(this, &player2, i);
player2.spwn = 1;
player2.elem = PT_DUST;
if ((save->majorVersion < 93 && parts[i].ctype == SPC_AIR) ||
(save->majorVersion < 88 && parts[i].ctype == OLD_SPC_AIR))
{
player2.fan = true;
}
if (save->stkm.rocketBoots2)
player2.rocketBoots = true;
if (save->stkm.fan2)
player2.fan = true;
break;
case PT_SPAWN:
player.spawnID = i;
break;
case PT_SPAWN2:
player2.spawnID = i;
break;
case PT_FIGH:
{
unsigned int oldTmp = parts[i].tmp;
int Element_FIGH_Alloc(Simulation *sim);
parts[i].tmp = Element_FIGH_Alloc(this);
if (parts[i].tmp >= 0)
{
bool fan = false;
if ((save->majorVersion < 93 && parts[i].ctype == SPC_AIR)
|| (save->majorVersion < 88 && parts[i].ctype == OLD_SPC_AIR))
{
fan = true;
parts[i].ctype = 0;
}
fighters[parts[i].tmp].elem = PT_DUST;
void Element_FIGH_NewFighter(Simulation *sim, int fighterID, int i, int elem);
Element_FIGH_NewFighter(this, parts[i].tmp, i, parts[i].ctype);
if (fan)
fighters[parts[i].tmp].fan = true;
for (unsigned int fighNum : save->stkm.rocketBootsFigh)
{
if (fighNum == oldTmp)
fighters[parts[i].tmp].rocketBoots = true;
}
for (unsigned int fighNum : save->stkm.fanFigh)
{
if (fighNum == oldTmp)
fighters[parts[i].tmp].fan = true;
}
}
else
{
// Should not be possible because we verify with CanAlloc above this
parts[i].type = 0;
}
break;
}
case PT_SOAP:
soapList.insert(std::pair<unsigned int, unsigned int>(n, i));
break;
}
if (GameSave::PressureInTmp3(parts[i].type) && !includePressure)
{
parts[i].tmp3 = 0;
}
if (!parts[i].type)
{
continue;
}
// Mark to be preserved in the loop below.
parts[i].type |= 1 << PMAPBITS;
}
parts_lastActiveIndex = NPART-1;
force_stacking_check = true;
Element_PPIP_ppip_changed = 1;
// Loop through particles to find particles in need of being killed
for (int i = 0; i <= parts_lastActiveIndex; i++)
{
if (parts[i].type)
{
int x = int(parts[i].x + 0.5f);
int y = int(parts[i].y + 0.5f);
bool preserve = parts[i].type & (1 << PMAPBITS);
parts[i].type &= ~(1 << PMAPBITS);
if (pmap[y][x] == -1 && !preserve)
{
kill_part(i);
}
}
}
RecalcFreeParticles(false);
// fix SOAP links using soapList, a map of old particle ID -> new particle ID
// loop through every old particle (loaded from save), and convert .tmp / .tmp2
for (std::map<unsigned int, unsigned int>::iterator iter = soapList.begin(), end = soapList.end(); iter != end; ++iter)
{
int i = (*iter).second;
if ((parts[i].ctype & 0x2) == 2)
{
std::map<unsigned int, unsigned int>::iterator n = soapList.find(parts[i].tmp);
if (n != end)
parts[i].tmp = n->second;
// sometimes the proper SOAP isn't found. It should remove the link, but seems to break some saves
// so just ignore it
}
if ((parts[i].ctype & 0x4) == 4)
{
std::map<unsigned int, unsigned int>::iterator n = soapList.find(parts[i].tmp2);
if (n != end)
parts[i].tmp2 = n->second;
// sometimes the proper SOAP isn't found. It should remove the link, but seems to break some saves
// so just ignore it
}
}
for (size_t i = 0; i < save->signs.size() && signs.size() < MAXSIGNS; i++)
{
if (save->signs[i].text.length())
{
sign tempSign = save->signs[i];
tempSign.x += partP.X;
tempSign.y += partP.Y;
if (!InBounds(tempSign.x, tempSign.y))
{
continue;
}
signs.push_back(tempSign);
}
}
for (auto bpos : RectSized(blockP, save->blockSize) & CELLS.OriginRect())
{
auto spos = bpos - blockP;
if (save->blockMap[spos])
{
bmap[bpos.Y][bpos.X] = save->blockMap[spos];
fvx[bpos.Y][bpos.X] = save->fanVelX[spos];
fvy[bpos.Y][bpos.X] = save->fanVelY[spos];
}
if (includePressure)
{
if (save->hasPressure)
{
pv[bpos.Y][bpos.X] = save->pressure[spos];
vx[bpos.Y][bpos.X] = save->velocityX[spos];
vy[bpos.Y][bpos.X] = save->velocityY[spos];
}
if (save->hasAmbientHeat)
{
hv[bpos.Y][bpos.X] = save->ambientHeat[spos];
}
if (save->hasBlockAirMaps)
{
air->bmap_blockair[bpos.Y][bpos.X] = save->blockAir[spos];
air->bmap_blockairh[bpos.Y][bpos.X] = save->blockAirh[spos];
}
}
}
gravWallChanged = true;
if (!save->hasBlockAirMaps)
{
air->ApproximateBlockAirMaps();
}
}
std::unique_ptr<GameSave> Simulation::Save(bool includePressure, Rect<int> partR) // particle coordinates
{
auto blockR = RectBetween(partR.TopLeft / CELL, partR.BottomRight / CELL);
auto blockP = blockR.TopLeft;
auto newSave = std::make_unique<GameSave>(blockR.Size());
auto &possiblyCarriesType = Particle::PossiblyCarriesType();
auto &properties = Particle::GetProperties();
newSave->frameCount = frameCount;
newSave->rngState = rng.state();
int storedParts = 0;
int elementCount[PT_NUM];
std::fill(elementCount, elementCount+PT_NUM, 0);
// Map of soap particles loaded into this save, old ID -> new ID
// Now stores all particles, not just SOAP (but still only used for soap)
std::map<unsigned int, unsigned int> particleMap;
std::set<int> paletteSet;
for (int i = 0; i < NPART; i++)
{
int x, y;
x = int(parts[i].x + 0.5f);
y = int(parts[i].y + 0.5f);
if (parts[i].type && partR.Contains({ x, y }))
{
Particle tempPart = parts[i];
tempPart.x -= blockP.X * CELL;
tempPart.y -= blockP.Y * CELL;
if (elements[tempPart.type].Enabled)
{
particleMap.insert(std::pair<unsigned int, unsigned int>(i, storedParts));
*newSave << tempPart;
storedParts++;
elementCount[tempPart.type]++;
paletteSet.insert(tempPart.type);
for (auto index : possiblyCarriesType)
{
if (elements[tempPart.type].CarriesTypeIn & (1U << index))
{
auto *prop = reinterpret_cast<const int *>(reinterpret_cast<const char *>(&tempPart) + properties[index].Offset);
paletteSet.insert(TYP(*prop));
}
}
}
}
}
for (int ID : paletteSet)
newSave->palette.push_back(GameSave::PaletteItem(elements[ID].Identifier, ID));
if (storedParts && elementCount[PT_SOAP])
{
// fix SOAP links using particleMap, a map of old particle ID -> new particle ID
// loop through every new particle (saved into the save), and convert .tmp / .tmp2
for (std::map<unsigned int, unsigned int>::iterator iter = particleMap.begin(), end = particleMap.end(); iter != end; ++iter)
{
int i = (*iter).second;
if (newSave->particles[i].type != PT_SOAP)
continue;
if ((newSave->particles[i].ctype & 0x2) == 2)
{
std::map<unsigned int, unsigned int>::iterator n = particleMap.find(newSave->particles[i].tmp);
if (n != end)
newSave->particles[i].tmp = n->second;
else
{
newSave->particles[i].tmp = 0;
newSave->particles[i].ctype ^= 2;
}
}
if ((newSave->particles[i].ctype & 0x4) == 4)
{
std::map<unsigned int, unsigned int>::iterator n = particleMap.find(newSave->particles[i].tmp2);
if (n != end)
newSave->particles[i].tmp2 = n->second;
else
{
newSave->particles[i].tmp2 = 0;
newSave->particles[i].ctype ^= 4;
}
}
}
}
for (size_t i = 0; i < MAXSIGNS && i < signs.size(); i++)
{
if (signs[i].text.length() && partR.Contains({ signs[i].x, signs[i].y }))
{
sign tempSign = signs[i];
tempSign.x -= blockP.X * CELL;
tempSign.y -= blockP.Y * CELL;
*newSave << tempSign;
}
}
for (auto bpos : newSave->blockSize.OriginRect())
{
if(bmap[bpos.Y + blockP.Y][bpos.X + blockP.X])
{
newSave->blockMap[bpos] = bmap[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->fanVelX[bpos] = fvx[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->fanVelY[bpos] = fvy[bpos.Y + blockP.Y][bpos.X + blockP.X];
}
if (includePressure)
{
newSave->pressure[bpos] = pv[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->velocityX[bpos] = vx[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->velocityY[bpos] = vy[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->ambientHeat[bpos] = hv[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->blockAir[bpos] = air->bmap_blockair[bpos.Y + blockP.Y][bpos.X + blockP.X];
newSave->blockAirh[bpos] = air->bmap_blockairh[bpos.Y + blockP.Y][bpos.X + blockP.X];
}
}
if (includePressure || ensureDeterminism)
{
newSave->hasPressure = true;
newSave->hasAmbientHeat = true;
}
newSave->ensureDeterminism = ensureDeterminism;
newSave->stkm.rocketBoots1 = player.rocketBoots;
newSave->stkm.rocketBoots2 = player2.rocketBoots;
newSave->stkm.fan1 = player.fan;
newSave->stkm.fan2 = player2.fan;
for (unsigned char i = 0; i < MAX_FIGHTERS; i++)
{
if (fighters[i].rocketBoots)
newSave->stkm.rocketBootsFigh.push_back(i);
if (fighters[i].fan)
newSave->stkm.fanFigh.push_back(i);
}
SaveSimOptions(*newSave);
newSave->pmapbits = PMAPBITS;
return newSave;
}
void Simulation::SaveSimOptions(GameSave &gameSave)
{
gameSave.gravityMode = gravityMode;
gameSave.customGravityX = customGravityX;
gameSave.customGravityY = customGravityY;
gameSave.airMode = air->airMode;
gameSave.ambientAirTemp = air->ambientAirTemp;
gameSave.edgeMode = edgeMode;
gameSave.legacyEnable = legacy_enable;
gameSave.waterEEnabled = water_equal_test;
gameSave.gravityEnable = grav->IsEnabled();
gameSave.aheatEnable = aheat_enable;
}
bool Simulation::FloodFillPmapCheck(int x, int y, int type)
{
if (type == 0)
return !pmap[y][x] && !photons[y][x];
if (elements[type].Properties&TYPE_ENERGY)
return TYP(photons[y][x]) == type;
else
return TYP(pmap[y][x]) == type;
}
CoordStack& Simulation::getCoordStackSingleton()
{
// Future-proofing in case Simulation is later multithreaded
static THREAD_LOCAL(CoordStack, cs);
return cs;
}
int Simulation::flood_prop(int x, int y, StructProperty prop, PropertyValue propvalue)
{
int i, x1, x2, dy = 1;
int did_something = 0;
int r = pmap[y][x];
if (!r)
r = photons[y][x];
if (!r)
return 0;
int parttype = TYP(r);
char * bitmap = (char*)malloc(XRES*YRES); //Bitmap for checking
if (!bitmap) return -1;
memset(bitmap, 0, XRES*YRES);
try
{
CoordStack& cs = getCoordStackSingleton();
cs.clear();
cs.push(x, y);
do
{
cs.pop(x, y);
x1 = x2 = x;
while (x1>=CELL)
{
if (!FloodFillPmapCheck(x1-1, y, parttype) || bitmap[(y*XRES)+x1-1])
break;
x1--;
}
while (x2<XRES-CELL)
{
if (!FloodFillPmapCheck(x2+1, y, parttype) || bitmap[(y*XRES)+x2+1])
break;
x2++;
}
for (x=x1; x<=x2; x++)
{
i = pmap[y][x];
if (!i)
i = photons[y][x];
if (!i)
continue;
switch (prop.Type) {
case StructProperty::Float:
*((float*)(((char*)&parts[ID(i)])+prop.Offset)) = std::get<float>(propvalue);
break;
case StructProperty::ParticleType:
case StructProperty::Integer:
*((int*)(((char*)&parts[ID(i)])+prop.Offset)) = std::get<int>(propvalue);
break;
case StructProperty::UInteger:
*((unsigned int*)(((char*)&parts[ID(i)])+prop.Offset)) = std::get<unsigned int>(propvalue);
break;
default:
break;
}
bitmap[(y*XRES)+x] = 1;
did_something = 1;
}
if (y>=CELL+dy)
for (x=x1; x<=x2; x++)
if (FloodFillPmapCheck(x, y-dy, parttype) && !bitmap[((y-dy)*XRES)+x])
cs.push(x, y-dy);
if (y<YRES-CELL-dy)
for (x=x1; x<=x2; x++)
if (FloodFillPmapCheck(x, y+dy, parttype) && !bitmap[((y+dy)*XRES)+x])
cs.push(x, y+dy);
} while (cs.getSize()>0);
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
free(bitmap);
return -1;
}
free(bitmap);
return did_something;
}
int Simulation::FloodINST(int x, int y)
{
int x1, x2;
int created_something = 0;
const auto isSparkableInst = [this](int x, int y) -> bool {
return TYP(pmap[y][x])==PT_INST && parts[ID(pmap[y][x])].life==0;
};
const auto isInst = [this](int x, int y) -> bool {
return TYP(pmap[y][x])==PT_INST || (TYP(pmap[y][x])==PT_SPRK && parts[ID(pmap[y][x])].ctype==PT_INST);
};
if (!isSparkableInst(x,y))
return 1;
CoordStack& cs = getCoordStackSingleton();
cs.clear();
cs.push(x, y);
try
{
do
{
cs.pop(x, y);
x1 = x2 = x;
// go left as far as possible
while (x1>=CELL && isSparkableInst(x1-1, y))
{
x1--;
}
// go right as far as possible
while (x2<XRES-CELL && isSparkableInst(x2+1, y))
{
x2++;
}
// fill span
for (x=x1; x<=x2; x++)
{
if (create_part(-1, x, y, PT_SPRK)>=0)
created_something = 1;
}
// add vertically adjacent pixels to stack
// (wire crossing for INST)
if (y>=CELL+1 && x1==x2 &&
isInst(x1-1, y-1) && isInst(x1, y-1) && isInst(x1+1, y-1) &&
!isInst(x1-1, y-2) && isInst(x1, y-2) && !isInst(x1+1, y-2))
{
// travelling vertically up, skipping a horizontal line
if (isSparkableInst(x1, y-2))
{
cs.push(x1, y-2);
}
}
else if (y>=CELL+1)
{
for (x=x1; x<=x2; x++)
{
if (isSparkableInst(x, y-1))
{
if (x==x1 || x==x2 || y>=YRES-CELL-1 || !isInst(x, y+1) || isInst(x+1, y+1) || isInst(x-1, y+1))
{
// if at the end of a horizontal section, or if it's a T junction or not a 1px wire crossing
cs.push(x, y-1);
}
}
}
}
if (y<YRES-CELL-1 && x1==x2 &&
isInst(x1-1, y+1) && isInst(x1, y+1) && isInst(x1+1, y+1) &&
!isInst(x1-1, y+2) && isInst(x1, y+2) && !isInst(x1+1, y+2))
{
// travelling vertically down, skipping a horizontal line
if (isSparkableInst(x1, y+2))
{
cs.push(x1, y+2);
}
}
else if (y<YRES-CELL-1)
{
for (x=x1; x<=x2; x++)
{
if (isSparkableInst(x, y+1))
{
if (x==x1 || x==x2 || y<0 || !isInst(x, y-1) || isInst(x+1, y-1) || isInst(x-1, y-1))
{
// if at the end of a horizontal section, or if it's a T junction or not a 1px wire crossing
cs.push(x, y+1);
}
}
}
}
} while (cs.getSize()>0);
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
return -1;
}
return created_something;
}
bool Simulation::flood_water(int x, int y, int i)
{
int x1, x2, originalX = x, originalY = y;
int r = pmap[y][x];
if (!r)
return false;
// Bitmap for checking where we've already looked
auto bitmapPtr = std::unique_ptr<char[]>(new char[XRES * YRES]);
char *bitmap = bitmapPtr.get();
std::fill(&bitmap[0], &bitmap[0] + XRES * YRES, 0);
try
{
CoordStack& cs = getCoordStackSingleton();
cs.clear();
cs.push(x, y);
do
{
cs.pop(x, y);
x1 = x2 = x;
while (x1 >= CELL)
{
if (elements[TYP(pmap[y][x1 - 1])].Falldown != 2 || bitmap[(y * XRES) + x1 - 1])
break;
x1--;
}
while (x2 < XRES-CELL)
{
if (elements[TYP(pmap[y][x2 + 1])].Falldown != 2 || bitmap[(y * XRES) + x1 - 1])
break;
x2++;
}
for (int x = x1; x <= x2; x++)
{
if ((y - 1) > originalY && !pmap[y - 1][x])
{
// Try to move the water to a random position on this line, because there's probably a free location somewhere
int randPos = rng.between(x, x2);
if (!pmap[y - 1][randPos] && eval_move(parts[i].type, randPos, y - 1, nullptr))
x = randPos;
// Couldn't move to random position, so try the original position on the left
else if (!eval_move(parts[i].type, x, y - 1, nullptr))
continue;
move(i, originalX, originalY, float(x), float(y - 1));
return true;
}
bitmap[(y * XRES) + x] = 1;
}
if (y >= CELL + 1)
for (int x = x1; x <= x2; x++)
if (elements[TYP(pmap[y - 1][x])].Falldown == 2 && !bitmap[((y - 1) * XRES) + x])
cs.push(x, y - 1);
if (y < YRES - CELL - 1)
for (int x = x1; x <= x2; x++)
if (elements[TYP(pmap[y + 1][x])].Falldown == 2 && !bitmap[((y + 1) * XRES) + x])
cs.push(x, y + 1);
} while (cs.getSize() > 0);
}
catch (std::exception &e)
{
std::cerr << e.what() << std::endl;
return false;
}
return false;
}
void Simulation::SetEdgeMode(int newEdgeMode)
{
edgeMode = newEdgeMode;
switch(edgeMode)
{
case 0:
case 2:
for(int i = 0; i<XCELLS; i++)
{
bmap[0][i] = 0;
bmap[YCELLS-1][i] = 0;
}
for(int i = 1; i<(YCELLS-1); i++)
{
bmap[i][0] = 0;
bmap[i][XCELLS-1] = 0;
}
break;
case 1:
int i;
for(i=0; i<XCELLS; i++)
{
bmap[0][i] = WL_WALL;
bmap[YCELLS-1][i] = WL_WALL;
}
for(i=1; i<(YCELLS-1); i++)
{
bmap[i][0] = WL_WALL;
bmap[i][XCELLS-1] = WL_WALL;
}
break;
default:
SetEdgeMode(0);
}
}
// Now simply creates a 0 pixel radius line without all the complicated flags / other checks
// Would make sense to move to Editing.cpp but SPRK needs it.
void Simulation::CreateLine(int x1, int y1, int x2, int y2, int c)
{
bool reverseXY = abs(y2-y1) > abs(x2-x1);
int x, y, dx, dy, sy;
float e, de;
int v = ID(c);
c = TYP(c);
if (reverseXY)
{
y = x1;
x1 = y1;
y1 = y;
y = x2;
x2 = y2;
y2 = y;
}
if (x1 > x2)
{
y = x1;
x1 = x2;
x2 = y;
y = y1;
y1 = y2;
y2 = y;
}
dx = x2 - x1;
dy = abs(y2 - y1);
e = 0.0f;
de = dx ? dy/(float)dx : 0.0f;
y = y1;
sy = (y1<y2) ? 1 : -1;
for (x=x1; x<=x2; x++)
{
if (reverseXY)
create_part(-1, y, x, c, v);
else
create_part(-1, x, y, c, v);
e += de;
if (e >= 0.5f)
{
y += sy;
if ((y1<y2) ? (y<=y2) : (y>=y2))
{
if (reverseXY)
create_part(-1, y, x, c, v);
else
create_part(-1, x, y, c, v);
}
e -= 1.0f;
}
}
}
void Simulation::orbitalparts_get(int block1, int block2, int resblock1[], int resblock2[])
{
resblock1[0] = (block1&0x000000FF);
resblock1[1] = (block1&0x0000FF00)>>8;
resblock1[2] = (block1&0x00FF0000)>>16;
resblock1[3] = (block1&0xFF000000)>>24;
resblock2[0] = (block2&0x000000FF);
resblock2[1] = (block2&0x0000FF00)>>8;
resblock2[2] = (block2&0x00FF0000)>>16;
resblock2[3] = (block2&0xFF000000)>>24;
}
void Simulation::orbitalparts_set(int *block1, int *block2, int resblock1[], int resblock2[])
{
int block1tmp = 0;
int block2tmp = 0;
block1tmp = (resblock1[0]&0xFF);
block1tmp |= (resblock1[1]&0xFF)<<8;
block1tmp |= (resblock1[2]&0xFF)<<16;
block1tmp |= (resblock1[3]&0xFF)<<24;
block2tmp = (resblock2[0]&0xFF);
block2tmp |= (resblock2[1]&0xFF)<<8;
block2tmp |= (resblock2[2]&0xFF)<<16;
block2tmp |= (resblock2[3]&0xFF)<<24;
*block1 = block1tmp;
*block2 = block2tmp;
}
inline int Simulation::is_wire(int x, int y)
{
return bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE || bmap[y][x]==WL_STASIS;
}
inline int Simulation::is_wire_off(int x, int y)
{
return (bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE || bmap[y][x]==WL_STASIS) && emap[y][x]<8;
}
// implement __builtin_ctz and __builtin_clz on msvc
#ifdef _MSC_VER
unsigned msvc_ctz(unsigned a)
{
unsigned long i;
_BitScanForward(&i, a);
return i;
}
unsigned msvc_clz(unsigned a)
{
unsigned long i;
_BitScanReverse(&i, a);
return 31 - i;
}
#define __builtin_ctz msvc_ctz
#define __builtin_clz msvc_clz
#endif
int Simulation::get_wavelength_bin(int *wm)
{
int i, w0, wM, r;
if (!(*wm & 0x3FFFFFFF))
return -1;
#if defined(__GNUC__) || defined(_MSVC_VER)
w0 = __builtin_ctz(*wm | 0xC0000000);
wM = 31 - __builtin_clz(*wm & 0x3FFFFFFF);
#else
w0 = 30;
wM = 0;
for (i = 0; i < 30; i++)
if (*wm & (1<<i))
{
if (i < w0)
w0 = i;
if (i > wM)
wM = i;
}
#endif
if (wM - w0 < 5)
return wM + w0;
r = rng.gen();
i = (r >> 1) % (wM-w0-4);
i += w0;
if (r & 1)
{
*wm &= 0x1F << i;
return (i + 2) * 2;
}
else
{
*wm &= 0xF << i;
return (i + 2) * 2 - 1;
}
}
void Simulation::set_emap(int x, int y)
{
int x1, x2;
if (!is_wire_off(x, y))
return;
// go left as far as possible
x1 = x2 = x;
while (x1>0)
{
if (!is_wire_off(x1-1, y))
break;
x1--;
}
while (x2<XCELLS-1)
{
if (!is_wire_off(x2+1, y))
break;
x2++;
}
// fill span
for (x=x1; x<=x2; x++)
emap[y][x] = 16;
// fill children
if (y>1 && x1==x2 &&
is_wire(x1-1, y-1) && is_wire(x1, y-1) && is_wire(x1+1, y-1) &&
!is_wire(x1-1, y-2) && is_wire(x1, y-2) && !is_wire(x1+1, y-2))
set_emap(x1, y-2);
else if (y>0)
for (x=x1; x<=x2; x++)
if (is_wire_off(x, y-1))
{
if (x==x1 || x==x2 || y>=YCELLS-1 ||
is_wire(x-1, y-1) || is_wire(x+1, y-1) ||
is_wire(x-1, y+1) || !is_wire(x, y+1) || is_wire(x+1, y+1))
set_emap(x, y-1);
}
if (y<YCELLS-2 && x1==x2 &&
is_wire(x1-1, y+1) && is_wire(x1, y+1) && is_wire(x1+1, y+1) &&
!is_wire(x1-1, y+2) && is_wire(x1, y+2) && !is_wire(x1+1, y+2))
set_emap(x1, y+2);
else if (y<YCELLS-1)
for (x=x1; x<=x2; x++)
if (is_wire_off(x, y+1))
{
if (x==x1 || x==x2 || y<0 ||
is_wire(x-1, y+1) || is_wire(x+1, y+1) ||
is_wire(x-1, y-1) || !is_wire(x, y-1) || is_wire(x+1, y-1))
set_emap(x, y+1);
}
}
int Simulation::parts_avg(int ci, int ni,int t)
{
if (t==PT_INSL)//to keep electronics working
{
int pmr = pmap[((int)(parts[ci].y+0.5f) + (int)(parts[ni].y+0.5f))/2][((int)(parts[ci].x+0.5f) + (int)(parts[ni].x+0.5f))/2];
if (pmr)
return parts[ID(pmr)].type;
else
return PT_NONE;
}
else
{
int pmr2 = pmap[(int)((parts[ci].y + parts[ni].y)/2+0.5f)][(int)((parts[ci].x + parts[ni].x)/2+0.5f)];//seems to be more accurate.
if (pmr2)
{
if (parts[ID(pmr2)].type==t)
return t;
}
else
return PT_NONE;
}
return PT_NONE;
}
void Simulation::clear_sim(void)
{
ensureDeterminism = false;
frameCount = 0;
debug_nextToUpdate = 0;
debug_mostRecentlyUpdated = -1;
emp_decor = 0;
emp_trigger_count = 0;
signs.clear();
memset(bmap, 0, sizeof(bmap));
memset(emap, 0, sizeof(emap));
memset(parts, 0, sizeof(Particle)*NPART);
for (int i = 0; i < NPART-1; i++)
parts[i].life = i+1;
parts[NPART-1].life = -1;
pfree = 0;
parts_lastActiveIndex = 0;
memset(pmap, 0, sizeof(pmap));
memset(fvx, 0, sizeof(fvx));
memset(fvy, 0, sizeof(fvy));
memset(photons, 0, sizeof(photons));
memset(wireless, 0, sizeof(wireless));
memset(gol, 0, sizeof(gol));
memset(portalp, 0, sizeof(portalp));
memset(fighters, 0, sizeof(fighters));
memset(&player, 0, sizeof(player));
memset(&player2, 0, sizeof(player2));
std::fill(elementCount, elementCount+PT_NUM, 0);
elementRecount = true;
fighcount = 0;
player.spwn = 0;
player.spawnID = -1;
player.rocketBoots = false;
player.fan = false;
player2.spwn = 0;
player2.spawnID = -1;
player2.rocketBoots = false;
player2.fan = false;
//memset(pers_bg, 0, WINDOWW*YRES*PIXELSIZE);
//memset(fire_r, 0, sizeof(fire_r));
//memset(fire_g, 0, sizeof(fire_g));
//memset(fire_b, 0, sizeof(fire_b));
//if(gravmask)
//memset(gravmask, 0xFFFFFFFF, NCELL*sizeof(unsigned));
if(grav)
grav->Clear();
if(air)
{
air->Clear();
air->ClearAirH();
}
SetEdgeMode(edgeMode);
}
bool Simulation::IsWallBlocking(int x, int y, int type)
{
if (bmap[y/CELL][x/CELL])
{
int wall = bmap[y/CELL][x/CELL];
if (wall == WL_ALLOWGAS && !(elements[type].Properties&TYPE_GAS))
return true;
else if (wall == WL_ALLOWENERGY && !(elements[type].Properties&TYPE_ENERGY))
return true;
else if (wall == WL_ALLOWLIQUID && !(elements[type].Properties&TYPE_LIQUID))
return true;
else if (wall == WL_ALLOWPOWDER && !(elements[type].Properties&TYPE_PART))
return true;
else if (wall == WL_ALLOWAIR || wall == WL_WALL || wall == WL_WALLELEC)
return true;
else if (wall == WL_EWALL && !emap[y/CELL][x/CELL])
return true;
else if (wall == WL_DETECT && (elements[type].Properties&TYPE_SOLID))
return true;
}
return false;
}
void Simulation::init_can_move()
{
int movingType, destinationType;
// can_move[moving type][type at destination]
// 0 = No move/Bounce
// 1 = Swap
// 2 = Both particles occupy the same space.
// 3 = Varies, go run some extra checks
//particles that don't exist shouldn't move...
for (destinationType = 0; destinationType < PT_NUM; destinationType++)
can_move[0][destinationType] = 0;
//initialize everything else to swapping by default
for (movingType = 1; movingType < PT_NUM; movingType++)
for (destinationType = 0; destinationType < PT_NUM; destinationType++)
can_move[movingType][destinationType] = 1;
//photons go through everything by default
for (destinationType = 1; destinationType < PT_NUM; destinationType++)
can_move[PT_PHOT][destinationType] = 2;
for (movingType = 1; movingType < PT_NUM; movingType++)
{
for (destinationType = 1; destinationType < PT_NUM; destinationType++)
{
//weight check, also prevents particles of same type displacing each other
if (elements[movingType].Weight <= elements[destinationType].Weight || destinationType == PT_GEL)
can_move[movingType][destinationType] = 0;
//other checks for NEUT and energy particles
if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTPASS))
can_move[movingType][destinationType] = 2;
if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTABSORB))
can_move[movingType][destinationType] = 1;
if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTPENETRATE))
can_move[movingType][destinationType] = 1;
if (destinationType == PT_NEUT && (elements[movingType].Properties&PROP_NEUTPENETRATE))
can_move[movingType][destinationType] = 0;
if ((elements[movingType].Properties&TYPE_ENERGY) && (elements[destinationType].Properties&TYPE_ENERGY))
can_move[movingType][destinationType] = 2;
}
}
for (destinationType = 0; destinationType < PT_NUM; destinationType++)
{
//set what stickmen can move through
int stkm_move = 0;
if (elements[destinationType].Properties & (TYPE_LIQUID | TYPE_GAS))
stkm_move = 2;
if (!destinationType || destinationType == PT_PRTO || destinationType == PT_SPAWN || destinationType == PT_SPAWN2)
stkm_move = 2;
can_move[PT_STKM][destinationType] = stkm_move;
can_move[PT_STKM2][destinationType] = stkm_move;
can_move[PT_FIGH][destinationType] = stkm_move;
//spark shouldn't move
can_move[PT_SPRK][destinationType] = 0;
}
for (movingType = 1; movingType < PT_NUM; movingType++)
{
//everything "swaps" with VACU and BHOL to make them eat things
can_move[movingType][PT_BHOL] = 1;
can_move[movingType][PT_NBHL] = 1;
//nothing goes through stickmen
can_move[movingType][PT_STKM] = 0;
can_move[movingType][PT_STKM2] = 0;
can_move[movingType][PT_FIGH] = 0;
//INVS behaviour varies with pressure
can_move[movingType][PT_INVIS] = 3;
//stop CNCT from being displaced by other particles
can_move[movingType][PT_CNCT] = 0;
//VOID and PVOD behaviour varies with powered state and ctype
can_move[movingType][PT_PVOD] = 3;
can_move[movingType][PT_VOID] = 3;
//nothing moves through EMBR (not sure why, but it's killed when it touches anything)
can_move[movingType][PT_EMBR] = 0;
can_move[PT_EMBR][movingType] = 0;
//Energy particles move through VIBR and BVBR, so it can absorb them
if (elements[movingType].Properties & TYPE_ENERGY)
{
can_move[movingType][PT_VIBR] = 1;
can_move[movingType][PT_BVBR] = 1;
}
//SAWD cannot be displaced by other powders
if (elements[movingType].Properties & TYPE_PART)
can_move[movingType][PT_SAWD] = 0;
}
//a list of lots of things PHOT can move through
// TODO: replace with property
for (destinationType = 0; destinationType < PT_NUM; destinationType++)
{
if (destinationType == PT_GLAS || destinationType == PT_PHOT || destinationType == PT_FILT || destinationType == PT_INVIS
|| destinationType == PT_CLNE || destinationType == PT_PCLN || destinationType == PT_BCLN || destinationType == PT_PBCN
|| destinationType == PT_WATR || destinationType == PT_DSTW || destinationType == PT_SLTW || destinationType == PT_GLOW
|| destinationType == PT_ISOZ || destinationType == PT_ISZS || destinationType == PT_QRTZ || destinationType == PT_PQRT
|| destinationType == PT_H2 || destinationType == PT_BGLA || destinationType == PT_C5)
can_move[PT_PHOT][destinationType] = 2;
if (destinationType != PT_DMND && destinationType != PT_INSL && destinationType != PT_VOID && destinationType != PT_PVOD && destinationType != PT_VIBR && destinationType != PT_BVBR && destinationType != PT_PRTI && destinationType != PT_PRTO)
{
can_move[PT_PROT][destinationType] = 2;
can_move[PT_GRVT][destinationType] = 2;
}
}
//other special cases that weren't covered above
can_move[PT_DEST][PT_DMND] = 0;
can_move[PT_DEST][PT_CLNE] = 0;
can_move[PT_DEST][PT_PCLN] = 0;
can_move[PT_DEST][PT_BCLN] = 0;
can_move[PT_DEST][PT_PBCN] = 0;
can_move[PT_DEST][PT_ROCK] = 0;
can_move[PT_NEUT][PT_INVIS] = 2;
can_move[PT_ELEC][PT_LCRY] = 2;
can_move[PT_ELEC][PT_EXOT] = 2;
can_move[PT_ELEC][PT_GLOW] = 2;
can_move[PT_PHOT][PT_LCRY] = 3; //varies according to LCRY life
can_move[PT_PHOT][PT_GPMP] = 3;
can_move[PT_PHOT][PT_BIZR] = 2;
can_move[PT_ELEC][PT_BIZR] = 2;
can_move[PT_PHOT][PT_BIZRG] = 2;
can_move[PT_ELEC][PT_BIZRG] = 2;
can_move[PT_PHOT][PT_BIZRS] = 2;
can_move[PT_ELEC][PT_BIZRS] = 2;
can_move[PT_BIZR][PT_FILT] = 2;
can_move[PT_BIZRG][PT_FILT] = 2;
can_move[PT_ANAR][PT_WHOL] = 1; //WHOL eats ANAR
can_move[PT_ANAR][PT_NWHL] = 1;
can_move[PT_ELEC][PT_DEUT] = 1;
can_move[PT_THDR][PT_THDR] = 2;
can_move[PT_EMBR][PT_EMBR] = 2;
can_move[PT_TRON][PT_SWCH] = 3;
can_move[PT_SOAP][PT_OIL] = 0;
can_move[PT_OIL][PT_SOAP] = 1;
}
/*
RETURN-value explanation
1 = Swap
0 = No move/Bounce
2 = Both particles occupy the same space.
*/
int Simulation::eval_move(int pt, int nx, int ny, unsigned *rr)
{
unsigned r;
int result;
if (nx<0 || ny<0 || nx>=XRES || ny>=YRES)
return 0;
r = pmap[ny][nx];
if (r)
r = (r&~PMAPMASK) | parts[ID(r)].type;
if (rr)
*rr = r;
if (pt>=PT_NUM || TYP(r)>=PT_NUM)
return 0;
result = can_move[pt][TYP(r)];
if (result == 3)
{
switch (TYP(r))
{
case PT_LCRY:
if (pt==PT_PHOT)
result = (parts[ID(r)].life > 5)? 2 : 0;
break;
case PT_GPMP:
if (pt == PT_PHOT)
result = (parts[ID(r)].life < 10) ? 2 : 0;
break;
case PT_INVIS:
{
float pressureResistance = 0.0f;
if (parts[ID(r)].tmp > 0)
pressureResistance = (float)parts[ID(r)].tmp;
else
pressureResistance = 4.0f;
if (pv[ny/CELL][nx/CELL] < -pressureResistance || pv[ny/CELL][nx/CELL] > pressureResistance)
result = 2;
else
result = 0;
break;
}
case PT_PVOD:
if (parts[ID(r)].life == 10)
{
if (!parts[ID(r)].ctype || (parts[ID(r)].ctype==pt)!=(parts[ID(r)].tmp&1))
result = 1;
else
result = 0;
}
else result = 0;
break;
case PT_VOID:
if (!parts[ID(r)].ctype || (parts[ID(r)].ctype==pt)!=(parts[ID(r)].tmp&1))
result = 1;
else
result = 0;
break;
case PT_SWCH:
if (pt == PT_TRON)
{
if (parts[ID(r)].life >= 10)
return 2;
else
return 0;
}
break;
default:
// This should never happen
// If it were to happen, try_move would interpret a 3 as a 1
result = 1;
}
}
if (bmap[ny/CELL][nx/CELL])
{
if (IsWallBlocking(nx, ny, pt))
return 0;
if (bmap[ny/CELL][nx/CELL]==WL_EHOLE && !emap[ny/CELL][nx/CELL] && !(elements[pt].Properties&TYPE_SOLID) && !(elements[TYP(r)].Properties&TYPE_SOLID))
return 2;
}
return result;
}
int Simulation::try_move(int i, int x, int y, int nx, int ny)
{
unsigned r = 0, e;
if (x==nx && y==ny)
return 1;
if (nx<0 || ny<0 || nx>=XRES || ny>=YRES)
return 1;
e = eval_move(parts[i].type, nx, ny, &r);
/* half-silvered mirror */
if (!e && parts[i].type==PT_PHOT && ((TYP(r)==PT_BMTL && rng.chance(1, 2)) || TYP(pmap[y][x])==PT_BMTL))
e = 2;
if (!e) //if no movement
{
int rt = TYP(r);
if (rt == PT_WOOD)
{
float vel = std::sqrt(std::pow(parts[i].vx, 2) + std::pow(parts[i].vy, 2));
if (vel > 5)
part_change_type(ID(r), nx, ny, PT_SAWD);
}
if (!(elements[parts[i].type].Properties & TYPE_ENERGY))
return 0;
if (!legacy_enable && parts[i].type==PT_PHOT && r)//PHOT heat conduction
{
if (rt == PT_COAL || rt == PT_BCOL)
parts[ID(r)].temp = parts[i].temp;
if (rt < PT_NUM && elements[rt].HeatConduct && (rt!=PT_HSWC||parts[ID(r)].life==10) && rt!=PT_FILT)
parts[i].temp = parts[ID(r)].temp = restrict_flt((parts[ID(r)].temp+parts[i].temp)/2, MIN_TEMP, MAX_TEMP);
}
else if ((parts[i].type==PT_NEUT || parts[i].type==PT_ELEC) && (rt==PT_CLNE || rt==PT_PCLN || rt==PT_BCLN || rt==PT_PBCN))
{
if (!parts[ID(r)].ctype)
parts[ID(r)].ctype = parts[i].type;
}
if (rt==PT_PRTI && (elements[parts[i].type].Properties & TYPE_ENERGY))
{
int nnx, count;
for (count=0; count<8; count++)
{
if (isign(x-nx)==isign(portal_rx[count]) && isign(y-ny)==isign(portal_ry[count]))
break;
}
count = count%8;
parts[ID(r)].tmp = (int)((parts[ID(r)].temp-73.15f)/100+1);
if (parts[ID(r)].tmp>=CHANNELS) parts[ID(r)].tmp = CHANNELS-1;
else if (parts[ID(r)].tmp<0) parts[ID(r)].tmp = 0;
for ( nnx=0; nnx<80; nnx++)
if (!portalp[parts[ID(r)].tmp][count][nnx].type)
{
portalp[parts[ID(r)].tmp][count][nnx] = parts[i];
parts[i].type=PT_NONE;
break;
}
}
return 0;
}
int Element_FILT_interactWavelengths(Simulation *sim, Particle* cpart, int origWl);
if (e == 2) //if occupy same space
{
switch (parts[i].type)
{
case PT_PHOT:
{
switch (TYP(r))
{
case PT_GLOW:
if (!parts[ID(r)].life && rng.chance(29, 30))
{
parts[ID(r)].life = 120;
create_gain_photon(i);
}
break;
case PT_FILT:
parts[i].ctype = Element_FILT_interactWavelengths(this, &parts[ID(r)], parts[i].ctype);
break;
case PT_C5:
if (parts[ID(r)].life > 0 && (parts[ID(r)].ctype & parts[i].ctype & 0xFFFFFFC0))
{
float vx = ((parts[ID(r)].tmp << 16) >> 16) / 255.0f;
float vy = (parts[ID(r)].tmp >> 16) / 255.0f;
float vn = parts[i].vx * parts[i].vx + parts[i].vy * parts[i].vy;
// if the resulting velocity would be 0, that would cause division by 0 inside the else
// shoot the photon off at a 90 degree angle instead (probably particle order dependent)
if (parts[i].vx + vx == 0 && parts[i].vy + vy == 0)
{
parts[i].vx = vy;
parts[i].vy = -vx;
}
else
{
parts[i].ctype = (parts[ID(r)].ctype & parts[i].ctype) >> 6;
// add momentum of photons to each other
parts[i].vx += vx;
parts[i].vy += vy;
// normalize velocity to original value
vn /= parts[i].vx * parts[i].vx + parts[i].vy * parts[i].vy;
vn = sqrtf(vn);
parts[i].vx *= vn;
parts[i].vy *= vn;
}
parts[ID(r)].life = 0;
parts[ID(r)].ctype = 0;
}
else if(!parts[ID(r)].ctype && parts[i].ctype & 0xFFFFFFC0)
{
parts[ID(r)].life = 1;
parts[ID(r)].ctype = parts[i].ctype;
parts[ID(r)].tmp = (0xFFFF & (int)(parts[i].vx * 255.0f)) | (0xFFFF0000 & (int)(parts[i].vy * 16711680.0f));
parts[ID(r)].tmp2 = (0xFFFF & (int)((parts[i].x - x) * 255.0f)) | (0xFFFF0000 & (int)((parts[i].y - y) * 16711680.0f));
kill_part(i);
}
break;
case PT_INVIS:
{
float pressureResistance = 0.0f;
pressureResistance = (parts[ID(r)].tmp > 0) ? (float)parts[ID(r)].tmp : 4.0f;
if (pv[ny/CELL][nx/CELL] >= -pressureResistance && pv[ny/CELL][nx/CELL] <= pressureResistance)
{
part_change_type(i,x,y,PT_NEUT);
parts[i].ctype = 0;
}
break;
}
case PT_BIZR:
case PT_BIZRG:
case PT_BIZRS:
part_change_type(i, x, y, PT_ELEC);
parts[i].ctype = 0;
break;
case PT_H2:
if (!(parts[i].tmp&0x1))
{
part_change_type(i, x, y, PT_PROT);
parts[i].ctype = 0;
parts[i].tmp2 = 0x1;
create_part(ID(r), x, y, PT_ELEC);
return 1;
}
break;
case PT_GPMP:
if (parts[ID(r)].life == 0)
{
part_change_type(i, x, y, PT_GRVT);
parts[i].tmp = int(parts[ID(r)].temp - 273.15f);
}
break;
}
break;
}
case PT_NEUT:
if (TYP(r) == PT_GLAS || TYP(r) == PT_BGLA)
if (rng.chance(9, 10))
create_cherenkov_photon(i);
break;
case PT_ELEC:
if (TYP(r) == PT_GLOW)
{
part_change_type(i, x, y, PT_PHOT);
parts[i].ctype = 0x3FFFFFFF;
}
break;
case PT_PROT:
if (TYP(r) == PT_INVIS)
part_change_type(i, x, y, PT_NEUT);
break;
case PT_BIZR:
case PT_BIZRG:
if (TYP(r) == PT_FILT)
parts[i].ctype = Element_FILT_interactWavelengths(this, &parts[ID(r)], parts[i].ctype);
break;
}
return 1;
}
//else e=1 , we are trying to swap the particles, return 0 no swap/move, 1 is still overlap/move, because the swap takes place later
switch (TYP(r))
{
case PT_VOID:
case PT_PVOD:
// this is where void eats particles
// void ctype already checked in eval_move
kill_part(i);
return 0;
case PT_BHOL:
case PT_NBHL:
// this is where blackhole eats particles
if (!legacy_enable)
{
parts[ID(r)].temp = restrict_flt(parts[ID(r)].temp+parts[i].temp/2, MIN_TEMP, MAX_TEMP);//3.0f;
}
kill_part(i);
return 0;
case PT_WHOL:
case PT_NWHL:
// whitehole eats anar
if (parts[i].type == PT_ANAR)
{
if (!legacy_enable)
{
parts[ID(r)].temp = restrict_flt(parts[ID(r)].temp - (MAX_TEMP-parts[i].temp)/2, MIN_TEMP, MAX_TEMP);
}
kill_part(i);
return 0;
}
break;
case PT_DEUT:
if (parts[i].type == PT_ELEC)
{
if(parts[ID(r)].life < 6000)
parts[ID(r)].life += 1;
parts[ID(r)].temp = 0;
kill_part(i);
return 0;
}
break;
case PT_VIBR:
case PT_BVBR:
if ((elements[parts[i].type].Properties & TYPE_ENERGY))
{
parts[ID(r)].tmp += 20;
kill_part(i);
return 0;
}
break;
// SOAP slowly floats up inside OIL
case PT_SOAP:
if (parts[i].type == PT_OIL)
{
if (rng.chance(19, 20) || std::abs(parts[i].x - nx) > 3 || std::abs(parts[i].y - ny) > 3)
return 0;
}
break;
}
switch (parts[i].type)
{
case PT_NEUT:
if (elements[TYP(r)].Properties & PROP_NEUTABSORB)
{
kill_part(i);
return 0;
}
break;
case PT_CNCT:
{
float cnctGravX, cnctGravY; // Calculate offset from gravity
GetGravityField(x, y, elements[PT_CNCT].Gravity, elements[PT_CNCT].Gravity, cnctGravX, cnctGravY);
int offsetX = 0, offsetY = 0;
if (cnctGravX > 0.0f) offsetX++;
else if (cnctGravX < 0.0f) offsetX--;
if (cnctGravY > 0.0f) offsetY++;
else if (cnctGravY < 0.0f) offsetY--;
if ((offsetX != 0) != (offsetY != 0) && // Is this a different position (avoid diagonals, doesn't work well)
((nx - x) * offsetX > 0 || (ny - y) * offsetY > 0) && // Is the destination particle below the moving particle
(TYP(pmap[y+offsetY][x+offsetX]) == PT_CNCT || TYP(pmap[y+offsetY][x+offsetX]) == PT_ROCK)) //check below CNCT for another CNCT or ROCK
return 0;
}
break;
case PT_GBMB:
if (parts[i].life > 0)
return 0;
break;
}
if ((bmap[y/CELL][x/CELL]==WL_EHOLE && !emap[y/CELL][x/CELL]) && !(bmap[ny/CELL][nx/CELL]==WL_EHOLE && !emap[ny/CELL][nx/CELL]))
return 0;
int ri = ID(r); //ri is the particle number at r (pmap[ny][nx])
if (r)//the swap part, if we make it this far, swap
{
if (parts[i].type==PT_NEUT) {
// target material is NEUTPENETRATE, meaning it gets moved around when neutron passes
unsigned s = pmap[y][x];
if (s && !(elements[TYP(s)].Properties&PROP_NEUTPENETRATE))
return 1; // if the element currently underneath neutron isn't NEUTPENETRATE, don't move anything except the neutron
// if nothing is currently underneath neutron, only move target particle
if(bmap[y/CELL][x/CELL] == WL_ALLOWENERGY)
return 1; // do not drag target particle into an energy only wall
if (s)
{
pmap[ny][nx] = (s&~PMAPMASK)|parts[ID(s)].type;
parts[ID(s)].x = float(nx);
parts[ID(s)].y = float(ny);
}
else
pmap[ny][nx] = 0;
parts[ri].x = float(x);
parts[ri].y = float(y);
pmap[y][x] = PMAP(ri, parts[ri].type);
return 1;
}
if (ID(pmap[ny][nx]) == ri)
pmap[ny][nx] = 0;
parts[ri].x += float(x - nx);
parts[ri].y += float(y - ny);
int rx = int(parts[ri].x + 0.5f);
int ry = int(parts[ri].y + 0.5f);
// This check will never fail unless the pmap array has already been corrupted via another bug
// In that case, r's position is inaccurate (not actually at nx/ny) and rx/ry may be out of bounds
if (InBounds(rx, ry))
pmap[ry][rx] = PMAP(ri, parts[ri].type);
}
return 1;
}
// try to move particle, and if successful update pmap and parts[i].x,y
int Simulation::do_move(int i, int x, int y, float nxf, float nyf)
{
int nx = (int)(nxf+0.5f), ny = (int)(nyf+0.5f), result;
if (edgeMode == 2)
{
bool x_ok = (nx >= CELL && nx < XRES-CELL);
bool y_ok = (ny >= CELL && ny < YRES-CELL);
if (!x_ok)
nxf = remainder_p(nxf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f;
if (!y_ok)
nyf = remainder_p(nyf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f;
nx = (int)(nxf+0.5f);
ny = (int)(nyf+0.5f);
/*if (!x_ok || !y_ok)
{
//make sure there isn't something blocking it on the other side
//only needed if this if statement is moved after the try_move (like my mod)
//if (!eval_move(t, nx, ny, NULL) || (t == PT_PHOT && pmap[ny][nx]))
// return -1;
}*/
}
if (parts[i].type == PT_NONE)
return 0;
result = try_move(i, x, y, nx, ny);
if (result)
{
if (!move(i, x, y, nxf, nyf))
return -1;
}
return result;
}
bool Simulation::move(int i, int x, int y, float nxf, float nyf)
{
int nx = (int)(nxf+0.5f), ny = (int)(nyf+0.5f);
int t = parts[i].type;
parts[i].x = nxf;
parts[i].y = nyf;
if (ny != y || nx != x)
{
if (ID(pmap[y][x]) == i)
pmap[y][x] = 0;
if (ID(photons[y][x]) == i)
photons[y][x] = 0;
// kill_part if particle is out of bounds
if (nx < CELL || nx >= XRES - CELL || ny < CELL || ny >= YRES - CELL)
{
kill_part(i);
return false;
}
if (elements[t].Properties & TYPE_ENERGY)
photons[ny][nx] = PMAP(i, t);
else if (t)
pmap[ny][nx] = PMAP(i, t);
}
return true;
}
void Simulation::photoelectric_effect(int nx, int ny)//create sparks from PHOT when hitting PSCN and NSCN
{
unsigned r = pmap[ny][nx];
if (TYP(r) == PT_PSCN && !parts[ID(r)].life)
{
if (TYP(pmap[ny][nx-1]) == PT_NSCN || TYP(pmap[ny][nx+1]) == PT_NSCN ||
TYP(pmap[ny-1][nx]) == PT_NSCN || TYP(pmap[ny+1][nx]) == PT_NSCN)
{
parts[ID(r)].ctype = PT_PSCN;
part_change_type(ID(r), nx, ny, PT_SPRK);
parts[ID(r)].life = 4;
}
}
}
int Simulation::is_blocking(int t, int x, int y)
{
if (t & REFRACT) {
if (x<0 || y<0 || x>=XRES || y>=YRES)
return 0;
if (TYP(pmap[y][x]) == PT_GLAS || TYP(pmap[y][x]) == PT_BGLA)
return 1;
return 0;
}
return !eval_move(t, x, y, NULL);
}
int Simulation::is_boundary(int pt, int x, int y)
{
if (!is_blocking(pt,x,y))
return 0;
if (is_blocking(pt,x,y-1) && is_blocking(pt,x,y+1) && is_blocking(pt,x-1,y) && is_blocking(pt,x+1,y))
return 0;
return 1;
}
int Simulation::find_next_boundary(int pt, int *x, int *y, int dm, int *em, bool reverse)
{
static int dx[8] = {1,1,0,-1,-1,-1,0,1};
static int dy[8] = {0,1,1,1,0,-1,-1,-1};
static int de[8] = {0x83,0x07,0x0E,0x1C,0x38,0x70,0xE0,0xC1};
if (*x <= 0 || *x >= XRES-1 || *y <= 0 || *y >= YRES-1)
{
return 0;
}
if (*em != -1)
{
dm &= de[*em];
}
unsigned int mask = 0;
for (int i = 0; i < 8; ++i)
{
if (is_blocking(pt, *x + dx[i], *y + dy[i]))
{
mask |= (1U << i);
}
}
for (int i = 0; i < 8; ++i)
{
int n = (i + (reverse ? 1 : -1)) & 7;
if (((dm & mask & (1U << i))) && !(mask & (1U << n)))
{
*x += dx[i];
*y += dy[i];
*em = i;
return 1;
}
}
return 0;
}
int Simulation::get_normal(int pt, int x, int y, float dx, float dy, float *nx, float *ny)
{
int ldm, rdm, lm, rm;
int lx, ly, lv, rx, ry, rv;
int i, j;
float r, ex, ey;
if (!dx && !dy)
return 0;
if (!is_boundary(pt, x, y))
return 0;
ldm = 0xFF;
rdm = 0xFF;
lx = rx = x;
ly = ry = y;
lv = rv = 1;
lm = rm = -1;
j = 0;
for (i=0; i<SURF_RANGE; i++) {
if (lv)
lv = find_next_boundary(pt, &lx, &ly, ldm, &lm, true);
if (rv)
rv = find_next_boundary(pt, &rx, &ry, rdm, &rm, false);
j += lv + rv;
if (!lv && !rv)
break;
}
if (j < NORMAL_MIN_EST)
return 0;
if ((lx == rx) && (ly == ry))
return 0;
ex = float(rx - lx);
ey = float(ry - ly);
r = 1.0f/hypot(ex, ey);
*nx = ey * r;
*ny = -ex * r;
return 1;
}
int Simulation::get_normal_interp(int pt, float x0, float y0, float dx, float dy, float *nx, float *ny)
{
int x, y, i;
dx /= NORMAL_FRAC;
dy /= NORMAL_FRAC;
for (i=0; i<NORMAL_INTERP; i++) {
x = (int)(x0 + 0.5f);
y = (int)(y0 + 0.5f);
if (x < 0 || y < 0 || x >= XRES || y >= YRES)
{
return 0;
}
if (is_boundary(pt, x, y))
break;
x0 += dx;
y0 += dy;
}
if (i >= NORMAL_INTERP)
return 0;
if (pt == PT_PHOT)
photoelectric_effect(x, y);
return get_normal(pt, x, y, dx, dy, nx, ny);
}
void Simulation::kill_part(int i)//kills particle number i
{
if (i < 0 || i >= NPART)
return;
int x = (int)(parts[i].x + 0.5f);
int y = (int)(parts[i].y + 0.5f);
int t = parts[i].type;
if (t && elements[t].ChangeType)
{
(*(elements[t].ChangeType))(this, i, x, y, t, PT_NONE);
}
if (x >= 0 && y >= 0 && x < XRES && y < YRES)
{
if (ID(pmap[y][x]) == i)
pmap[y][x] = 0;
else if (ID(photons[y][x]) == i)
photons[y][x] = 0;
}
// This shouldn't happen but ... you never know?
if (t == PT_NONE)
return;
elementCount[t]--;
parts[i].type = PT_NONE;
parts[i].life = pfree;
pfree = i;
}
// Changes the type of particle number i, to t. This also changes pmap at the same time
// Returns true if the particle was killed
bool Simulation::part_change_type(int i, int x, int y, int t)
{
if (x<0 || y<0 || x>=XRES || y>=YRES || i>=NPART || t<0 || t>=PT_NUM || !parts[i].type)
return false;
if (!elements[t].Enabled || t == PT_NONE)
{
kill_part(i);
return true;
}
if (elements[t].CreateAllowed)
{
if (!(*(elements[t].CreateAllowed))(this, i, x, y, t))
return false;
}
if (elements[parts[i].type].ChangeType)
(*(elements[parts[i].type].ChangeType))(this, i, x, y, parts[i].type, t);
if (elements[t].ChangeType)
(*(elements[t].ChangeType))(this, i, x, y, parts[i].type, t);
if (parts[i].type > 0 && parts[i].type < PT_NUM && elementCount[parts[i].type])
elementCount[parts[i].type]--;
elementCount[t]++;
parts[i].type = t;
if (elements[t].Properties & TYPE_ENERGY)
{
photons[y][x] = PMAP(i, t);
if (ID(pmap[y][x]) == i)
pmap[y][x] = 0;
}
else
{
pmap[y][x] = PMAP(i, t);
if (ID(photons[y][x]) == i)
photons[y][x] = 0;
}
return false;
}
//the function for creating a particle, use p=-1 for creating a new particle, -2 is from a brush, or a particle number to replace a particle.
//tv = Type (PMAPBITS bits) + Var (32-PMAPBITS bits), var is usually 0
int Simulation::create_part(int p, int x, int y, int t, int v)
{
int i, oldType = PT_NONE;
if (x<0 || y<0 || x>=XRES || y>=YRES || t<=0 || t>=PT_NUM || !elements[t].Enabled)
return -1;
if (t == PT_SPRK && !(p == -2 && elements[TYP(pmap[y][x])].CtypeDraw))
{
int type = TYP(pmap[y][x]);
int index = ID(pmap[y][x]);
if(type == PT_WIRE)
{
parts[index].ctype = PT_DUST;
return index;
}
if (!(type == PT_INST || (elements[type].Properties&PROP_CONDUCTS)) || parts[index].life!=0)
return -1;
if (p == -2 && type == PT_INST)
{
FloodINST(x, y);
return index;
}
parts[index].type = PT_SPRK;
parts[index].life = 4;
parts[index].ctype = type;
pmap[y][x] = (pmap[y][x]&~PMAPMASK) | PT_SPRK;
if (parts[index].temp+10.0f < 673.0f && !legacy_enable && (type==PT_METL || type == PT_BMTL || type == PT_BRMT || type == PT_PSCN || type == PT_NSCN || type == PT_ETRD || type == PT_NBLE || type == PT_IRON))
parts[index].temp = parts[index].temp+10.0f;
return index;
}
if (p == -2)
{
if (pmap[y][x])
{
int drawOn = TYP(pmap[y][x]);
if (elements[drawOn].CtypeDraw)
elements[drawOn].CtypeDraw(this, ID(pmap[y][x]), t, v);
return -1;
}
else if (IsWallBlocking(x, y, t))
return -1;
else if (photons[y][x] && (elements[t].Properties & TYPE_ENERGY))
return -1;
}
if (elements[t].CreateAllowed)
{
if (!(*(elements[t].CreateAllowed))(this, p, x, y, t))
return -1;
}
if (p == -1)//creating from anything but brush
{
// If there is a particle, only allow creation if the new particle can occupy the same space as the existing particle
// If there isn't a particle but there is a wall, check whether the new particle is allowed to be in it
// (not "!=2" for wall check because eval_move returns 1 for moving into empty space)
// If there's no particle and no wall, assume creation is allowed
if (pmap[y][x] ? (eval_move(t, x, y, NULL) != 2) : (bmap[y/CELL][x/CELL] && eval_move(t, x, y, NULL) == 0))
{
return -1;
}
if (pfree == -1)
return -1;
i = pfree;
pfree = parts[i].life;
}
else if (p == -2)//creating from brush
{
if (pfree == -1)
return -1;
i = pfree;
pfree = parts[i].life;
}
else if (p == -3)//skip pmap checks, e.g. for sing explosion
{
if (pfree == -1)
return -1;
i = pfree;
pfree = parts[i].life;
}
else
{
int oldX = (int)(parts[p].x + 0.5f);
int oldY = (int)(parts[p].y + 0.5f);
if (ID(pmap[oldY][oldX]) == p)
pmap[oldY][oldX] = 0;
if (ID(photons[oldY][oldX]) == p)
photons[oldY][oldX] = 0;
oldType = parts[p].type;
if (elements[oldType].ChangeType)
(*(elements[oldType].ChangeType))(this, p, oldX, oldY, oldType, t);
if (oldType)
elementCount[oldType]--;
i = p;
}
if (i>parts_lastActiveIndex) parts_lastActiveIndex = i;
parts[i] = elements[t].DefaultProperties;
parts[i].type = t;
parts[i].x = (float)x;
parts[i].y = (float)y;
//and finally set the pmap/photon maps to the newly created particle
if (elements[t].Properties & TYPE_ENERGY)
photons[y][x] = PMAP(i, t);
else if (t!=PT_STKM && t!=PT_STKM2 && t!=PT_FIGH)
pmap[y][x] = PMAP(i, t);
//Fancy dust effects for powder types
if((elements[t].Properties & TYPE_PART) && pretty_powder)
{
int colr, colg, colb;
int sandcolourToUse = p == -2 ? sandcolour_interface : sandcolour;
RGB<uint8_t> colour = elements[t].Colour;
colr = colour.Red + int(sandcolourToUse * 1.3) + rng.between(-20, 20) + rng.between(-15, 15);
colg = colour.Green + int(sandcolourToUse * 1.3) + rng.between(-20, 20) + rng.between(-15, 15);
colb = colour.Blue + int(sandcolourToUse * 1.3) + rng.between(-20, 20) + rng.between(-15, 15);
colr = std::clamp(colr, 0, 255);
colg = std::clamp(colg, 0, 255);
colb = std::clamp(colb, 0, 255);
parts[i].dcolour = (rng.between(0, 149)<<24) | (colr<<16) | (colg<<8) | colb;
}
// Set non-static properties (such as randomly generated ones)
if (elements[t].Create)
(*(elements[t].Create))(this, i, x, y, t, v);
if (elements[t].ChangeType)
(*(elements[t].ChangeType))(this, i, x, y, oldType, t);
elementCount[t]++;
return i;
}
void Simulation::GetGravityField(int x, int y, float particleGrav, float newtonGrav, float & pGravX, float & pGravY)
{
switch (gravityMode)
{
default:
case 0: //normal, vertical gravity
pGravX = 0;
pGravY = particleGrav;
break;
case 1: //no gravity
pGravX = 0;
pGravY = 0;
break;
case 2: //radial gravity
{
pGravX = 0;
pGravY = 0;
auto dx = float(x - XCNTR);
auto dy = float(y - YCNTR);
if (dx || dy)
{
auto pGravD = 0.01f - hypotf(dx, dy);
pGravX = particleGrav * (dx / pGravD);
pGravY = particleGrav * (dy / pGravD);
}
}
break;
case 3: //custom gravity
pGravX = particleGrav * customGravityX;
pGravY = particleGrav * customGravityY;
break;
}
if (newtonGrav)
{
pGravX += newtonGrav*gravx[(y/CELL)*XCELLS+(x/CELL)];
pGravY += newtonGrav*gravy[(y/CELL)*XCELLS+(x/CELL)];
}
}
void Simulation::create_gain_photon(int pp)//photons from PHOT going through GLOW
{
float xx, yy;
int i, lr, temp_bin, nx, ny;
if (pfree == -1)
return;
i = pfree;
lr = 2*rng.between(0, 1) - 1; // -1 or 1
xx = parts[pp].x - lr*0.3*parts[pp].vy;
yy = parts[pp].y + lr*0.3*parts[pp].vx;
nx = (int)(xx + 0.5f);
ny = (int)(yy + 0.5f);
if (nx<0 || ny<0 || nx>=XRES || ny>=YRES)
return;
if (TYP(pmap[ny][nx]) != PT_GLOW)
return;
pfree = parts[i].life;
if (i>parts_lastActiveIndex) parts_lastActiveIndex = i;
parts[i].type = PT_PHOT;
parts[i].life = 680;
parts[i].x = xx;
parts[i].y = yy;
parts[i].vx = parts[pp].vx;
parts[i].vy = parts[pp].vy;
parts[i].temp = parts[ID(pmap[ny][nx])].temp;
parts[i].tmp = 0;
parts[i].tmp3 = 0;
parts[i].tmp4 = 0;
photons[ny][nx] = PMAP(i, PT_PHOT);
temp_bin = (int)((parts[i].temp-273.0f)*0.25f);
if (temp_bin < 0) temp_bin = 0;
if (temp_bin > 25) temp_bin = 25;
parts[i].ctype = 0x1F << temp_bin;
}
void Simulation::create_cherenkov_photon(int pp)//photons from NEUT going through GLAS
{
int i, lr, nx, ny;
float r;
if (pfree == -1)
return;
i = pfree;
nx = (int)(parts[pp].x + 0.5f);
ny = (int)(parts[pp].y + 0.5f);
if (TYP(pmap[ny][nx]) != PT_GLAS && TYP(pmap[ny][nx]) != PT_BGLA)
return;
if (hypotf(parts[pp].vx, parts[pp].vy) < 1.44f)
return;
pfree = parts[i].life;
if (i>parts_lastActiveIndex) parts_lastActiveIndex = i;
lr = rng.between(0, 1);
parts[i].type = PT_PHOT;
parts[i].ctype = 0x00000F80;
parts[i].life = 680;
parts[i].x = parts[pp].x;
parts[i].y = parts[pp].y;
parts[i].temp = parts[ID(pmap[ny][nx])].temp;
parts[i].tmp = 0;
parts[i].tmp3 = 0;
parts[i].tmp4 = 0;
photons[ny][nx] = PMAP(i, PT_PHOT);
if (lr) {
parts[i].vx = parts[pp].vx - 2.5f*parts[pp].vy;
parts[i].vy = parts[pp].vy + 2.5f*parts[pp].vx;
} else {
parts[i].vx = parts[pp].vx + 2.5f*parts[pp].vy;
parts[i].vy = parts[pp].vy - 2.5f*parts[pp].vx;
}
/* photons have speed of light. no discussion. */
r = 1.269 / hypotf(parts[i].vx, parts[i].vy);
parts[i].vx *= r;
parts[i].vy *= r;
}
void Simulation::delete_part(int x, int y)//calls kill_part with the particle located at x,y
{
unsigned i;
if (x<0 || y<0 || x>=XRES || y>=YRES)
return;
i = photons[y][x] ? photons[y][x] : pmap[y][x];
if (!i)
return;
kill_part(ID(i));
}
void Simulation::UpdateParticles(int start, int end)
{
int i, j, x, y, t, r, surround_space, s, rt, nt;
float mv, dx, dy, nrx, nry, dp, ctemph, ctempl, gravtot;
int fin_x, fin_y, clear_x, clear_y, stagnant;
float fin_xf, fin_yf, clear_xf, clear_yf;
float nn, ct1, ct2, swappage;
float pt = R_TEMP;
float c_heat = 0.0f;
int h_count = 0;
int surround[8];
int surround_hconduct[8];
bool transitionOccurred;
//the main particle loop function, goes over all particles.
for (i = start; i < end && i <= parts_lastActiveIndex; i++)
if (parts[i].type)
{
debug_mostRecentlyUpdated = i;
t = parts[i].type;
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
// Kill a particle off screen
if (x<CELL || y<CELL || x>=XRES-CELL || y>=YRES-CELL)
{
kill_part(i);
continue;
}
// Kill a particle in a wall where it isn't supposed to go
if (bmap[y/CELL][x/CELL] &&
(bmap[y/CELL][x/CELL]==WL_WALL ||
bmap[y/CELL][x/CELL]==WL_WALLELEC ||
bmap[y/CELL][x/CELL]==WL_ALLOWAIR ||
(bmap[y/CELL][x/CELL]==WL_DESTROYALL) ||
(bmap[y/CELL][x/CELL]==WL_ALLOWLIQUID && !(elements[t].Properties&TYPE_LIQUID)) ||
(bmap[y/CELL][x/CELL]==WL_ALLOWPOWDER && !(elements[t].Properties&TYPE_PART)) ||
(bmap[y/CELL][x/CELL]==WL_ALLOWGAS && !(elements[t].Properties&TYPE_GAS)) || //&& elements[t].Falldown!=0 && parts[i].type!=PT_FIRE && parts[i].type!=PT_SMKE && parts[i].type!=PT_CFLM) ||
(bmap[y/CELL][x/CELL]==WL_ALLOWENERGY && !(elements[t].Properties&TYPE_ENERGY)) ||
(bmap[y/CELL][x/CELL]==WL_EWALL && !emap[y/CELL][x/CELL])) && (t!=PT_STKM) && (t!=PT_STKM2) && (t!=PT_FIGH))
{
kill_part(i);
continue;
}
// Make sure that STASIS'd particles don't tick.
if (bmap[y/CELL][x/CELL] == WL_STASIS && emap[y/CELL][x/CELL]<8) {
continue;
}
if (bmap[y/CELL][x/CELL]==WL_DETECT && emap[y/CELL][x/CELL]<8)
set_emap(x/CELL, y/CELL);
//adding to velocity from the particle's velocity
vx[y/CELL][x/CELL] = vx[y/CELL][x/CELL]*elements[t].AirLoss + elements[t].AirDrag*parts[i].vx;
vy[y/CELL][x/CELL] = vy[y/CELL][x/CELL]*elements[t].AirLoss + elements[t].AirDrag*parts[i].vy;
if (elements[t].HotAir)
{
if (t==PT_GAS||t==PT_NBLE)
{
if (pv[y/CELL][x/CELL]<3.5f)
pv[y/CELL][x/CELL] += elements[t].HotAir*(3.5f-pv[y/CELL][x/CELL]);
if (y+CELL<YRES && pv[y/CELL+1][x/CELL]<3.5f)
pv[y/CELL+1][x/CELL] += elements[t].HotAir*(3.5f-pv[y/CELL+1][x/CELL]);
if (x+CELL<XRES)
{
if (pv[y/CELL][x/CELL+1]<3.5f)
pv[y/CELL][x/CELL+1] += elements[t].HotAir*(3.5f-pv[y/CELL][x/CELL+1]);
if (y+CELL<YRES && pv[y/CELL+1][x/CELL+1]<3.5f)
pv[y/CELL+1][x/CELL+1] += elements[t].HotAir*(3.5f-pv[y/CELL+1][x/CELL+1]);
}
}
else//add the hotair variable to the pressure map, like black hole, or white hole.
{
pv[y/CELL][x/CELL] += elements[t].HotAir;
if (y+CELL<YRES)
pv[y/CELL+1][x/CELL] += elements[t].HotAir;
if (x+CELL<XRES)
{
pv[y/CELL][x/CELL+1] += elements[t].HotAir;
if (y+CELL<YRES)
pv[y/CELL+1][x/CELL+1] += elements[t].HotAir;
}
}
}
float pGravX = 0, pGravY = 0;
if (!(elements[t].Properties & TYPE_SOLID) && (elements[t].Gravity || elements[t].NewtonianGravity))
{
GetGravityField(x, y, elements[t].Gravity, elements[t].NewtonianGravity, pGravX, pGravY);
}
//velocity updates for the particle
if (t != PT_SPNG || !(parts[i].flags&FLAG_MOVABLE))
{
parts[i].vx *= elements[t].Loss;
parts[i].vy *= elements[t].Loss;
}
//particle gets velocity from the vx and vy maps
parts[i].vx += elements[t].Advection*vx[y/CELL][x/CELL] + pGravX;
parts[i].vy += elements[t].Advection*vy[y/CELL][x/CELL] + pGravY;
if (elements[t].Diffusion)//the random diffusion that gasses have
{
#ifdef REALISTIC
//The magic number controls diffusion speed
parts[i].vx += 0.05*sqrtf(parts[i].temp)*elements[t].Diffusion*(2.0f*rng.uniform01()-1.0f);
parts[i].vy += 0.05*sqrtf(parts[i].temp)*elements[t].Diffusion*(2.0f*rng.uniform01()-1.0f);
#else
parts[i].vx += elements[t].Diffusion*(2.0f*rng.uniform01()-1.0f);
parts[i].vy += elements[t].Diffusion*(2.0f*rng.uniform01()-1.0f);
#endif
}
transitionOccurred = false;
j = surround_space = nt = 0;//if nt is greater than 1 after this, then there is a particle around the current particle, that is NOT the current particle's type, for water movement.
for (auto nx=-1; nx<2; nx++)
for (auto ny=-1; ny<2; ny++) {
if (nx||ny) {
surround[j] = r = pmap[y+ny][x+nx];
j++;
surround_space += (!TYP(r)); // count empty space
nt += (TYP(r)!=t); // count empty space and particles of different type
}
}
float gel_scale = 1.0f;
if (t==PT_GEL)
gel_scale = parts[i].tmp*2.55f;
if (!legacy_enable)
{
if ((elements[t].Properties&TYPE_LIQUID) && (t!=PT_GEL || gel_scale > (1 + rng.between(0, 254))))
{
float convGravX, convGravY;
GetGravityField(x, y, -2.0f, -2.0f, convGravX, convGravY);
auto offsetX = int(std::round(convGravX + x));
auto offsetY = int(std::round(convGravY + y));
if ((offsetX != x || offsetY != y) && offsetX >= 0 && offsetX < XRES && offsetY >= 0 && offsetY < YRES) {//some heat convection for liquids
r = pmap[offsetY][offsetX];
if (!(!r || parts[i].type != TYP(r))) {
if (parts[i].temp>parts[ID(r)].temp) {
swappage = parts[i].temp;
parts[i].temp = parts[ID(r)].temp;
parts[ID(r)].temp = swappage;
}
}
}
}
//heat transfer code
h_count = 0;
#ifdef REALISTIC
if (t&&(t!=PT_HSWC||parts[i].life==10)&&(elements[t].HeatConduct*gel_scale))
#else
if (t && (t!=PT_HSWC||parts[i].life==10) && rng.chance(int(elements[t].HeatConduct*gel_scale), 250))
#endif
{
if (aheat_enable && !(elements[t].Properties&PROP_NOAMBHEAT))
{
#ifdef REALISTIC
c_heat = parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight) + hv[y/CELL][x/CELL]*100*(pv[y/CELL][x/CELL]-MIN_PRESSURE)/(MAX_PRESSURE-MIN_PRESSURE)*2;
float c_Cm = 96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight) + 100*(pv[y/CELL][x/CELL]-MIN_PRESSURE)/(MAX_PRESSURE-MIN_PRESSURE)*2;
pt = c_heat/c_Cm;
pt = restrict_flt(pt, -MAX_TEMP+MIN_TEMP, MAX_TEMP-MIN_TEMP);
parts[i].temp = pt;
//Pressure increase from heat (temporary)
pv[y/CELL][x/CELL] += (pt-hv[y/CELL][x/CELL])*0.004;
hv[y/CELL][x/CELL] = pt;
#else
c_heat = (hv[y/CELL][x/CELL]-parts[i].temp)*0.04;
c_heat = restrict_flt(c_heat, -MAX_TEMP+MIN_TEMP, MAX_TEMP-MIN_TEMP);
parts[i].temp += c_heat;
hv[y/CELL][x/CELL] -= c_heat;
#endif
}
c_heat = 0.0f;
#ifdef REALISTIC
float c_Cm = 0.0f;
#endif
for (j=0; j<8; j++)
{
surround_hconduct[j] = i;
r = surround[j];
if (!r)
continue;
rt = TYP(r);
if (rt && elements[rt].HeatConduct && (rt!=PT_HSWC||parts[ID(r)].life==10)
&& (t!=PT_FILT||(rt!=PT_BRAY&&rt!=PT_BIZR&&rt!=PT_BIZRG))
&& (rt!=PT_FILT||(t!=PT_BRAY&&t!=PT_PHOT&&t!=PT_BIZR&&t!=PT_BIZRG))
&& (t!=PT_ELEC||rt!=PT_DEUT)
&& (t!=PT_DEUT||rt!=PT_ELEC)
&& (t!=PT_HSWC || rt!=PT_FILT || parts[i].tmp != 1)
&& (t!=PT_FILT || rt!=PT_HSWC || parts[ID(r)].tmp != 1))
{
surround_hconduct[j] = ID(r);
#ifdef REALISTIC
if (rt==PT_GEL)
gel_scale = parts[ID(r)].tmp*2.55f;
else gel_scale = 1.0f;
c_heat += parts[ID(r)].temp*96.645/elements[rt].HeatConduct*gel_scale*fabs(elements[rt].Weight);
c_Cm += 96.645/elements[rt].HeatConduct*gel_scale*fabs(elements[rt].Weight);
#else
c_heat += parts[ID(r)].temp;
#endif
h_count++;
}
}
#ifdef REALISTIC
if (t==PT_GEL)
gel_scale = parts[i].tmp*2.55f;
else gel_scale = 1.0f;
if (t == PT_PHOT)
pt = (c_heat+parts[i].temp*96.645)/(c_Cm+96.645);
else
pt = (c_heat+parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight))/(c_Cm+96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight));
c_heat += parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight);
c_Cm += 96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight);
parts[i].temp = restrict_flt(pt, MIN_TEMP, MAX_TEMP);
#else
pt = (c_heat+parts[i].temp)/(h_count+1);
pt = parts[i].temp = restrict_flt(pt, MIN_TEMP, MAX_TEMP);
for (j=0; j<8; j++)
{
parts[surround_hconduct[j]].temp = pt;
}
#endif
ctemph = ctempl = pt;
// change boiling point with pressure
if (((elements[t].Properties&TYPE_LIQUID) && IsElementOrNone(elements[t].HighTemperatureTransition) && (elements[elements[t].HighTemperatureTransition].Properties&TYPE_GAS))
|| t==PT_LNTG || t==PT_SLTW)
ctemph -= 2.0f*pv[y/CELL][x/CELL];
else if (((elements[t].Properties&TYPE_GAS) && IsElementOrNone(elements[t].LowTemperatureTransition) && (elements[elements[t].LowTemperatureTransition].Properties&TYPE_LIQUID))
|| t==PT_WTRV)
ctempl -= 2.0f*pv[y/CELL][x/CELL];
s = 1;
//A fix for ice with ctype = 0
if ((t==PT_ICEI || t==PT_SNOW) && (!IsElement(parts[i].ctype) || parts[i].ctype==PT_ICEI || parts[i].ctype==PT_SNOW))
parts[i].ctype = PT_WATR;
if (elements[t].HighTemperatureTransition>-1 && ctemph>=elements[t].HighTemperature)
{
// particle type change due to high temperature
#ifdef REALISTIC
float dbt = ctempl - pt;
if (elements[t].HighTemperatureTransition != PT_NUM)
{
if (platent[t] <= (c_heat - (elements[t].HighTemperature - dbt)*c_Cm))
{
pt = (c_heat - platent[t])/c_Cm;
t = elements[t].HighTemperatureTransition;
}
else
{
parts[i].temp = restrict_flt(elements[t].HighTemperature - dbt, MIN_TEMP, MAX_TEMP);
s = 0;
}
}
#else
if (elements[t].HighTemperatureTransition != PT_NUM)
t = elements[t].HighTemperatureTransition;
#endif
else if (t == PT_ICEI || t == PT_SNOW)
{
if (parts[i].ctype > 0 && parts[i].ctype < PT_NUM && parts[i].ctype != t)
{
if (elements[parts[i].ctype].LowTemperatureTransition==PT_ICEI || elements[parts[i].ctype].LowTemperatureTransition==PT_SNOW)
{
if (pt<elements[parts[i].ctype].LowTemperature)
s = 0;
}
else if (pt<273.15f)
s = 0;
if (s)
{
#ifdef REALISTIC
//One ice table value for all it's kinds
if (platent[t] <= (c_heat - (elements[parts[i].ctype].LowTemperature - dbt)*c_Cm))
{
pt = (c_heat - platent[t])/c_Cm;
t = parts[i].ctype;
parts[i].ctype = PT_NONE;
parts[i].life = 0;
}
else
{
parts[i].temp = restrict_flt(elements[parts[i].ctype].LowTemperature - dbt, MIN_TEMP, MAX_TEMP);
s = 0;
}
#else
t = parts[i].ctype;
parts[i].ctype = PT_NONE;
parts[i].life = 0;
#endif
}
}
else
s = 0;
}
else if (t == PT_SLTW)
{
#ifdef REALISTIC
if (platent[t] <= (c_heat - (elements[t].HighTemperature - dbt)*c_Cm))
{
pt = (c_heat - platent[t])/c_Cm;
t = rng.chance(1, 4) ? PT_SALT : PT_WTRV;
}
else
{
parts[i].temp = restrict_flt(elements[t].HighTemperature - dbt, MIN_TEMP, MAX_TEMP);
s = 0;
}
#else
t = rng.chance(1, 4) ? PT_SALT : PT_WTRV;
#endif
}
else if (t == PT_BRMT)
{
if (parts[i].ctype == PT_TUNG)
{
if (ctemph < elements[parts[i].ctype].HighTemperature)
s = 0;
else
{
t = PT_LAVA;
parts[i].type = PT_TUNG;
}
}
else if (ctemph >= elements[t].HighTemperature)
t = PT_LAVA;
else
s = 0;
}
else if (t == PT_CRMC)
{
float pres = std::max((pv[y/CELL][x/CELL]+pv[(y-2)/CELL][x/CELL]+pv[(y+2)/CELL][x/CELL]+pv[y/CELL][(x-2)/CELL]+pv[y/CELL][(x+2)/CELL])*2.0f, 0.0f);
if (ctemph < pres+elements[PT_CRMC].HighTemperature)
s = 0;
else
t = PT_LAVA;
}
else
s = 0;
}
else if (elements[t].LowTemperatureTransition > -1 && ctempl<elements[t].LowTemperature)
{
// particle type change due to low temperature
#ifdef REALISTIC
float dbt = ctempl - pt;
if (elements[t].LowTemperatureTransition != PT_NUM)
{
if (platent[elements[t].LowTemperatureTransition] >= (c_heat - (elements[t].LowTemperature - dbt)*c_Cm))
{
pt = (c_heat + platent[elements[t].LowTemperatureTransition])/c_Cm;
t = elements[t].LowTemperatureTransition;
}
else
{
parts[i].temp = restrict_flt(elements[t].LowTemperature - dbt, MIN_TEMP, MAX_TEMP);
s = 0;
}
}
#else
if (elements[t].LowTemperatureTransition != PT_NUM)
t = elements[t].LowTemperatureTransition;
#endif
else if (t == PT_WTRV)
{
t = (pt < 273.0f) ? PT_RIME : PT_DSTW;
}
else if (t == PT_LAVA)
{
if (parts[i].ctype > 0 && parts[i].ctype < PT_NUM && parts[i].ctype != PT_LAVA && elements[parts[i].ctype].Enabled)
{
if (parts[i].ctype == PT_THRM && pt >= elements[PT_BMTL].HighTemperature)
s = 0;
else if ((parts[i].ctype == PT_VIBR || parts[i].ctype == PT_BVBR) && pt >= 273.15f)
s = 0;
else if (parts[i].ctype == PT_TUNG)
{
// TUNG does its own melting in its update function, so HighTemperatureTransition is not LAVA so it won't be handled by the code for HighTemperatureTransition==PT_LAVA below
// However, the threshold is stored in HighTemperature to allow it to be changed from Lua
if (pt >= elements[parts[i].ctype].HighTemperature)
s = 0;
}
else if (parts[i].ctype == PT_CRMC)
{
float pres = std::max((pv[y/CELL][x/CELL]+pv[(y-2)/CELL][x/CELL]+pv[(y+2)/CELL][x/CELL]+pv[y/CELL][(x-2)/CELL]+pv[y/CELL][(x+2)/CELL])*2.0f, 0.0f);
if (ctemph >= pres+elements[PT_CRMC].HighTemperature)
s = 0;
}
else if (elements[parts[i].ctype].HighTemperatureTransition == PT_LAVA || parts[i].ctype == PT_HEAC)
{
if (pt >= elements[parts[i].ctype].HighTemperature)
s = 0;
}
else if (pt>=973.0f)
s = 0; // freezing point for lava with any other (not listed in ptransitions as turning into lava) ctype
if (s)
{
t = parts[i].ctype;
parts[i].ctype = PT_NONE;
if (t == PT_THRM)
{
parts[i].tmp = 0;
t = PT_BMTL;
}
if (t == PT_PLUT)
{
parts[i].tmp = 0;
t = PT_LAVA;
}
}
}
else if (pt<973.0f)
t = PT_STNE;
else
s = 0;
}
else
s = 0;
}
else
s = 0;
#ifdef REALISTIC
pt = restrict_flt(pt, MIN_TEMP, MAX_TEMP);
for (j=0; j<8; j++)
{
parts[surround_hconduct[j]].temp = pt;
}
#endif
if (s) // particle type change occurred
{
if (t==PT_ICEI || t==PT_LAVA || t==PT_SNOW)
parts[i].ctype = parts[i].type;
if (!(t==PT_ICEI && parts[i].ctype==PT_FRZW))
parts[i].life = 0;
if (t == PT_FIRE)
{
//hackish, if tmp isn't 0 the FIRE might turn into DSTW later
//idealy transitions should use create_part(i) but some elements rely on properties staying constant
//and I don't feel like checking each one right now
parts[i].tmp = 0;
}
if ((elements[t].Properties&TYPE_GAS) && !(elements[parts[i].type].Properties&TYPE_GAS))
pv[y/CELL][x/CELL] += 0.50f;
if (t == PT_NONE)
{
kill_part(i);
goto killed;
}
// part_change_type could refuse to change the type and kill the particle
// for example, changing type to STKM but one already exists
// we need to account for that to not cause simulation corruption issues
if (part_change_type(i,x,y,t))
goto killed;
if (t==PT_FIRE || t==PT_PLSM || t==PT_CFLM)
parts[i].life = rng.between(120, 169);
if (t == PT_LAVA)
{
if (parts[i].ctype == PT_BRMT) parts[i].ctype = PT_BMTL;
else if (parts[i].ctype == PT_SAND) parts[i].ctype = PT_GLAS;
else if (parts[i].ctype == PT_BGLA) parts[i].ctype = PT_GLAS;
else if (parts[i].ctype == PT_PQRT) parts[i].ctype = PT_QRTZ;
else if (parts[i].ctype == PT_LITH && parts[i].tmp2 > 3) parts[i].ctype = PT_GLAS;
parts[i].life = rng.between(240, 359);
}
transitionOccurred = true;
}
pt = parts[i].temp = restrict_flt(parts[i].temp, MIN_TEMP, MAX_TEMP);
if (t == PT_LAVA)
{
parts[i].life = int(restrict_flt((parts[i].temp-700)/7, 0, 400));
if (parts[i].ctype==PT_THRM&&parts[i].tmp>0)
{
parts[i].tmp--;
parts[i].temp = 3500;
}
if (parts[i].ctype==PT_PLUT&&parts[i].tmp>0)
{
parts[i].tmp--;
parts[i].temp = MAX_TEMP;
}
}
}
else
{
if (!(air->bmap_blockairh[y/CELL][x/CELL]&0x8))
air->bmap_blockairh[y/CELL][x/CELL]++;
parts[i].temp = restrict_flt(parts[i].temp, MIN_TEMP, MAX_TEMP);
}
}
if (t==PT_LIFE)
{
parts[i].temp = restrict_flt(parts[i].temp-50.0f, MIN_TEMP, MAX_TEMP);
}
if (t==PT_WIRE)
{
//wire_placed = 1;
}
//spark updates from walls
if ((elements[t].Properties&PROP_CONDUCTS) || t==PT_SPRK)
{
auto nx = x % CELL;
if (nx == 0)
nx = x/CELL - 1;
else if (nx == CELL-1)
nx = x/CELL + 1;
else
nx = x/CELL;
auto ny = y % CELL;
if (ny == 0)
ny = y/CELL - 1;
else if (ny == CELL-1)
ny = y/CELL + 1;
else
ny = y/CELL;
if (nx>=0 && ny>=0 && nx<XCELLS && ny<YCELLS)
{
if (t!=PT_SPRK)
{
if (emap[ny][nx]==12 && !parts[i].life && bmap[ny][nx] != WL_STASIS)
{
part_change_type(i,x,y,PT_SPRK);
parts[i].life = 4;
parts[i].ctype = t;
t = PT_SPRK;
}
}
else if (bmap[ny][nx]==WL_DETECT || bmap[ny][nx]==WL_EWALL || bmap[ny][nx]==WL_ALLOWLIQUID || bmap[ny][nx]==WL_WALLELEC || bmap[ny][nx]==WL_ALLOWALLELEC || bmap[ny][nx]==WL_EHOLE)
set_emap(nx, ny);
}
}
//the basic explosion, from the .explosive variable
if ((elements[t].Explosive&2) && pv[y/CELL][x/CELL]>2.5f)
{
parts[i].life = rng.between(180, 259);
parts[i].temp = restrict_flt(elements[PT_FIRE].DefaultProperties.temp + (elements[t].Flammable/2), MIN_TEMP, MAX_TEMP);
t = PT_FIRE;
part_change_type(i,x,y,t);
pv[y/CELL][x/CELL] += 0.25f * CFDS;
}
s = 1;
gravtot = fabs(gravy[(y/CELL)*XCELLS+(x/CELL)])+fabs(gravx[(y/CELL)*XCELLS+(x/CELL)]);
if (elements[t].HighPressureTransition>-1 && pv[y/CELL][x/CELL]>elements[t].HighPressure) {
// particle type change due to high pressure
if (elements[t].HighPressureTransition!=PT_NUM)
t = elements[t].HighPressureTransition;
else if (t==PT_BMTL) {
if (pv[y/CELL][x/CELL]>2.5f)
t = PT_BRMT;
else if (pv[y/CELL][x/CELL]>1.0f && parts[i].tmp==1)
t = PT_BRMT;
else s = 0;
}
else s = 0;
} else if (elements[t].LowPressureTransition>-1 && pv[y/CELL][x/CELL]<elements[t].LowPressure && gravtot<=(elements[t].LowPressure/4.0f)) {
// particle type change due to low pressure
if (elements[t].LowPressureTransition!=PT_NUM)
t = elements[t].LowPressureTransition;
else s = 0;
} else if (elements[t].HighPressureTransition>-1 && gravtot>(elements[t].HighPressure/4.0f)) {
// particle type change due to high gravity
if (elements[t].HighPressureTransition!=PT_NUM)
t = elements[t].HighPressureTransition;
else if (t==PT_BMTL) {
if (gravtot>0.625f)
t = PT_BRMT;
else if (gravtot>0.25f && parts[i].tmp==1)
t = PT_BRMT;
else s = 0;
}
else s = 0;
} else s = 0;
// particle type change occurred
if (s)
{
if (t == PT_NONE)
{
kill_part(i);
goto killed;
}
parts[i].life = 0;
// part_change_type could refuse to change the type and kill the particle
// for example, changing type to STKM but one already exists
// we need to account for that to not cause simulation corruption issues
if (part_change_type(i,x,y,t))
goto killed;
if (t == PT_FIRE)
parts[i].life = rng.between(120, 169);
transitionOccurred = true;
}
//call the particle update function, if there is one
if (elements[t].Update)
{
if ((*(elements[t].Update))(this, i, x, y, surround_space, nt, parts, pmap))
continue;
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
}
if(legacy_enable)//if heat sim is off
Element::legacyUpdate(this, i,x,y,surround_space,nt, parts, pmap);
killed:
if (parts[i].type == PT_NONE)//if its dead, skip to next particle
continue;
if (transitionOccurred)
continue;
if (!parts[i].vx&&!parts[i].vy)//if its not moving, skip to next particle, movement code it next
continue;
mv = fmaxf(fabsf(parts[i].vx), fabsf(parts[i].vy));
if (mv < ISTP)
{
clear_x = x;
clear_y = y;
clear_xf = parts[i].x;
clear_yf = parts[i].y;
fin_xf = clear_xf + parts[i].vx;
fin_yf = clear_yf + parts[i].vy;
fin_x = (int)(fin_xf+0.5f);
fin_y = (int)(fin_yf+0.5f);
}
else
{
if (mv > SIM_MAXVELOCITY)
{
parts[i].vx *= SIM_MAXVELOCITY/mv;
parts[i].vy *= SIM_MAXVELOCITY/mv;
mv = SIM_MAXVELOCITY;
}
// interpolate to see if there is anything in the way
dx = parts[i].vx*ISTP/mv;
dy = parts[i].vy*ISTP/mv;
fin_xf = parts[i].x;
fin_yf = parts[i].y;
fin_x = (int)(fin_xf+0.5f);
fin_y = (int)(fin_yf+0.5f);
bool closedEholeStart = InBounds(fin_x, fin_y) && (bmap[fin_y/CELL][fin_x/CELL] == WL_EHOLE && !emap[fin_y/CELL][fin_x/CELL]);
while (1)
{
mv -= ISTP;
fin_xf += dx;
fin_yf += dy;
fin_x = (int)(fin_xf+0.5f);
fin_y = (int)(fin_yf+0.5f);
if (edgeMode == 2)
{
bool x_ok = (fin_xf >= CELL-.5f && fin_xf < XRES-CELL-.5f);
bool y_ok = (fin_yf >= CELL-.5f && fin_yf < YRES-CELL-.5f);
if (!x_ok)
fin_xf = remainder_p(fin_xf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f;
if (!y_ok)
fin_yf = remainder_p(fin_yf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f;
fin_x = (int)(fin_xf+0.5f);
fin_y = (int)(fin_yf+0.5f);
}
if (mv <= 0.0f)
{
// nothing found
fin_xf = parts[i].x + parts[i].vx;
fin_yf = parts[i].y + parts[i].vy;
if (edgeMode == 2)
{
bool x_ok = (fin_xf >= CELL-.5f && fin_xf < XRES-CELL-.5f);
bool y_ok = (fin_yf >= CELL-.5f && fin_yf < YRES-CELL-.5f);
if (!x_ok)
fin_xf = remainder_p(fin_xf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f;
if (!y_ok)
fin_yf = remainder_p(fin_yf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f;
}
fin_x = (int)(fin_xf+0.5f);
fin_y = (int)(fin_yf+0.5f);
clear_xf = fin_xf-dx;
clear_yf = fin_yf-dy;
clear_x = (int)(clear_xf+0.5f);
clear_y = (int)(clear_yf+0.5f);
break;
}
//block if particle can't move (0), or some special cases where it returns 1 (can_move = 3 but returns 1 meaning particle will be eaten)
//also photons are still blocked (slowed down) by any particle (even ones it can move through), and absorb wall also blocks particles
int eval = eval_move(t, fin_x, fin_y, NULL);
if (!eval || (can_move[t][TYP(pmap[fin_y][fin_x])] == 3 && eval == 1) || (t == PT_PHOT && pmap[fin_y][fin_x]) || bmap[fin_y/CELL][fin_x/CELL]==WL_DESTROYALL || closedEholeStart!=(bmap[fin_y/CELL][fin_x/CELL] == WL_EHOLE && !emap[fin_y/CELL][fin_x/CELL]))
{
// found an obstacle
clear_xf = fin_xf-dx;
clear_yf = fin_yf-dy;
clear_x = (int)(clear_xf+0.5f);
clear_y = (int)(clear_yf+0.5f);
break;
}
if (bmap[fin_y/CELL][fin_x/CELL]==WL_DETECT && emap[fin_y/CELL][fin_x/CELL]<8)
set_emap(fin_x/CELL, fin_y/CELL);
}
}
stagnant = parts[i].flags & FLAG_STAGNANT;
parts[i].flags &= ~FLAG_STAGNANT;
if (t==PT_STKM || t==PT_STKM2 || t==PT_FIGH)
{
//head movement, let head pass through anything
parts[i].x += parts[i].vx;
parts[i].y += parts[i].vy;
int nx = (int)((float)parts[i].x+0.5f);
int ny = (int)((float)parts[i].y+0.5f);
if (edgeMode == 2)
{
bool x_ok = (nx >= CELL && nx < XRES-CELL);
bool y_ok = (ny >= CELL && ny < YRES-CELL);
int oldnx = nx, oldny = ny;
if (!x_ok)
{
parts[i].x = remainder_p(parts[i].x-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f;
nx = (int)((float)parts[i].x+0.5f);
}
if (!y_ok)
{
parts[i].y = remainder_p(parts[i].y-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f;
ny = (int)((float)parts[i].y+0.5f);
}
if (!x_ok || !y_ok) //when moving from left to right stickmen might be able to fall through solid things, fix with "eval_move(t, nx+diffx, ny+diffy, NULL)" but then they die instead
{
//adjust stickmen legs
playerst* stickman = NULL;
int t = parts[i].type;
if (t == PT_STKM)
stickman = &player;
else if (t == PT_STKM2)
stickman = &player2;
else if (t == PT_FIGH && parts[i].tmp >= 0 && parts[i].tmp < MAX_FIGHTERS)
stickman = &fighters[parts[i].tmp];
if (stickman)
for (int i = 0; i < 16; i+=2)
{
stickman->legs[i] += (nx-oldnx);
stickman->legs[i+1] += (ny-oldny);
stickman->accs[i/2] *= .95f;
}
parts[i].vy *= .95f;
parts[i].vx *= .95f;
}
}
if (ny!=y || nx!=x)
{
if (ID(pmap[y][x]) == i)
pmap[y][x] = 0;
else if (ID(photons[y][x]) == i)
photons[y][x] = 0;
if (nx<CELL || nx>=XRES-CELL || ny<CELL || ny>=YRES-CELL)
{
kill_part(i);
continue;
}
if (elements[t].Properties & TYPE_ENERGY)
photons[ny][nx] = PMAP(i, t);
else if (t)
pmap[ny][nx] = PMAP(i, t);
}
}
else if (elements[t].Properties & TYPE_ENERGY)
{
if (t == PT_PHOT)
{
if (parts[i].flags&FLAG_SKIPMOVE)
{
parts[i].flags &= ~FLAG_SKIPMOVE;
continue;
}
if (eval_move(PT_PHOT, fin_x, fin_y, NULL))
{
int rt = TYP(pmap[fin_y][fin_x]);
int lt = TYP(pmap[y][x]);
int rt_glas = (rt == PT_GLAS) || (rt == PT_BGLA);
int lt_glas = (lt == PT_GLAS) || (lt == PT_BGLA);
if ((rt_glas && !lt_glas) || (lt_glas && !rt_glas))
{
if (!get_normal_interp(REFRACT|t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry)) {
kill_part(i);
continue;
}
r = get_wavelength_bin(&parts[i].ctype);
if (r == -1 || !(parts[i].ctype&0x3FFFFFFF))
{
kill_part(i);
continue;
}
nn = GLASS_IOR - GLASS_DISP*(r-30)/30.0f;
nn *= nn;
auto enter = rt_glas && !lt_glas;
nrx = enter ? -nrx : nrx;
nry = enter ? -nry : nry;
nn = enter ? 1.0f/nn : nn;
ct1 = parts[i].vx*nrx + parts[i].vy*nry;
ct2 = 1.0f - (nn*nn)*(1.0f-(ct1*ct1));
if (ct2 < 0.0f) {
// total internal reflection
parts[i].vx -= 2.0f*ct1*nrx;
parts[i].vy -= 2.0f*ct1*nry;
fin_xf = parts[i].x;
fin_yf = parts[i].y;
fin_x = x;
fin_y = y;
} else {
// refraction
ct2 = sqrtf(ct2);
ct2 = ct2 - nn*ct1;
parts[i].vx = nn*parts[i].vx + ct2*nrx;
parts[i].vy = nn*parts[i].vy + ct2*nry;
}
}
}
}
if (stagnant)//FLAG_STAGNANT set, was reflected on previous frame
{
// cast coords as int then back to float for compatibility with existing saves
if (!do_move(i, x, y, (float)fin_x, (float)fin_y) && parts[i].type) {
kill_part(i);
continue;
}
}
else if (!do_move(i, x, y, fin_xf, fin_yf))
{
if (parts[i].type == PT_NONE)
continue;
// reflection
parts[i].flags |= FLAG_STAGNANT;
if (t==PT_NEUT && rng.chance(1, 10))
{
kill_part(i);
continue;
}
r = pmap[fin_y][fin_x];
if ((TYP(r)==PT_PIPE || TYP(r) == PT_PPIP) && !TYP(parts[ID(r)].ctype))
{
parts[ID(r)].ctype = parts[i].type;
parts[ID(r)].temp = parts[i].temp;
parts[ID(r)].tmp2 = parts[i].life;
parts[ID(r)].tmp3 = parts[i].tmp;
parts[ID(r)].tmp4 = parts[i].ctype;
kill_part(i);
continue;
}
if (t == PT_PHOT)
{
auto mask = elements[TYP(r)].PhotonReflectWavelengths;
if (TYP(r) == PT_LITH)
{
int wl_bin = parts[ID(r)].ctype / 4;
if (wl_bin < 0) wl_bin = 0;
if (wl_bin > 25) wl_bin = 25;
mask = (0x1F << wl_bin);
}
parts[i].ctype &= mask;
}
if (get_normal_interp(t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry))
{
if (TYP(r) == PT_CRMC)
{
float r = rng.between(-50, 50) * 0.01f, rx, ry, anrx, anry;
r = r * r * r;
rx = cosf(r); ry = sinf(r);
anrx = rx * nrx + ry * nry;
anry = rx * nry - ry * nrx;
dp = anrx*parts[i].vx + anry*parts[i].vy;
parts[i].vx -= 2.0f*dp*anrx;
parts[i].vy -= 2.0f*dp*anry;
}
else
{
dp = nrx*parts[i].vx + nry*parts[i].vy;
parts[i].vx -= 2.0f*dp*nrx;
parts[i].vy -= 2.0f*dp*nry;
}
// leave the actual movement until next frame so that reflection of fast particles and refraction happen correctly
}
else
{
if (t!=PT_NEUT)
kill_part(i);
continue;
}
if (!(parts[i].ctype&0x3FFFFFFF) && t == PT_PHOT)
{
kill_part(i);
continue;
}
}
}
else if (elements[t].Falldown==0)
{
// gasses and solids (but not powders)
if (!do_move(i, x, y, fin_xf, fin_yf))
{
if (parts[i].type == PT_NONE)
continue;
// can't move there, so bounce off
// TODO
// TODO: Work out what previous TODO was for
if (fin_x>x+ISTP) fin_x=x+ISTP;
if (fin_x<x-ISTP) fin_x=x-ISTP;
if (fin_y>y+ISTP) fin_y=y+ISTP;
if (fin_y<y-ISTP) fin_y=y-ISTP;
if (do_move(i, x, y, 0.25f+(float)(2*x-fin_x), 0.25f+fin_y))
{
parts[i].vx *= elements[t].Collision;
}
else if (do_move(i, x, y, 0.25f+fin_x, 0.25f+(float)(2*y-fin_y)))
{
parts[i].vy *= elements[t].Collision;
}
else
{
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
}
}
else
{
// Checking stagnant is cool, but then it doesn't update when you change it later.
if (water_equal_test && elements[t].Falldown == 2 && rng.chance(1, 200))
{
if (flood_water(x, y, i))
goto movedone;
}
// liquids and powders
if (!do_move(i, x, y, fin_xf, fin_yf))
{
if (parts[i].type == PT_NONE)
continue;
if (fin_x!=x && do_move(i, x, y, fin_xf, clear_yf))
{
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
else if (fin_y!=y && do_move(i, x, y, clear_xf, fin_yf))
{
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
else
{
s = 1;
r = rng.between(0, 1) * 2 - 1;// position search direction (left/right first)
if ((clear_x!=x || clear_y!=y || nt || surround_space) &&
(fabsf(parts[i].vx)>0.01f || fabsf(parts[i].vy)>0.01f))
{
// allow diagonal movement if target position is blocked
// but no point trying this if particle is stuck in a block of identical particles
dx = parts[i].vx - parts[i].vy*r;
dy = parts[i].vy + parts[i].vx*r;
mv = std::max(fabsf(dx), fabsf(dy));
dx /= mv;
dy /= mv;
if (do_move(i, x, y, clear_xf+dx, clear_yf+dy))
{
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
goto movedone;
}
swappage = dx;
dx = dy*r;
dy = -swappage*r;
if (do_move(i, x, y, clear_xf+dx, clear_yf+dy))
{
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
goto movedone;
}
}
if (elements[t].Falldown>1 && !grav->IsEnabled() && gravityMode==0 && parts[i].vy>fabsf(parts[i].vx))
{
s = 0;
// stagnant is true if FLAG_STAGNANT was set for this particle in previous frame
if (!stagnant || nt) //nt is if there is an something else besides the current particle type, around the particle
rt = 30;//slight less water lag, although it changes how it moves a lot
else
rt = 10;
if (t==PT_GEL)
rt = int(parts[i].tmp*0.20f+5.0f);
auto nx = -1, ny = -1;
for (j=clear_x+r; j>=0 && j>=clear_x-rt && j<clear_x+rt && j<XRES; j+=r)
{
if ((TYP(pmap[fin_y][j])!=t || bmap[fin_y/CELL][j/CELL])
&& (s=do_move(i, x, y, (float)j, fin_yf)))
{
nx = (int)(parts[i].x+0.5f);
ny = (int)(parts[i].y+0.5f);
break;
}
if (fin_y!=clear_y && (TYP(pmap[clear_y][j])!=t || bmap[clear_y/CELL][j/CELL])
&& (s=do_move(i, x, y, (float)j, clear_yf)))
{
nx = (int)(parts[i].x+0.5f);
ny = (int)(parts[i].y+0.5f);
break;
}
if (TYP(pmap[clear_y][j])!=t || (bmap[clear_y/CELL][j/CELL] && bmap[clear_y/CELL][j/CELL]!=WL_STREAM))
break;
}
r = (parts[i].vy>0) ? 1 : -1;
if (s==1)
for (j=ny+r; j>=0 && j<YRES && j>=ny-rt && j<ny+rt; j+=r)
{
if ((TYP(pmap[j][nx])!=t || bmap[j/CELL][nx/CELL]) && do_move(i, nx, ny, (float)nx, (float)j))
break;
if (TYP(pmap[j][nx])!=t || (bmap[j/CELL][nx/CELL] && bmap[j/CELL][nx/CELL]!=WL_STREAM))
break;
}
else if (s==-1) {} // particle is out of bounds
else if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {}
else parts[i].flags |= FLAG_STAGNANT;
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
else if (elements[t].Falldown>1 && fabsf(pGravX*parts[i].vx+pGravY*parts[i].vy)>fabsf(pGravY*parts[i].vx-pGravX*parts[i].vy))
{
float nxf, nyf, prev_pGravX, prev_pGravY, ptGrav = elements[t].Gravity;
s = 0;
// stagnant is true if FLAG_STAGNANT was set for this particle in previous frame
// nt is if there is something else besides the current particle type around the particle
// 30 gives slightly less water lag, although it changes how it moves a lot
rt = (!stagnant || nt) ? 30 : 10;
// clear_xf, clear_yf is the last known position that the particle should almost certainly be able to move to
nxf = clear_xf;
nyf = clear_yf;
auto nx = clear_x;
auto ny = clear_y;
// Look for spaces to move horizontally (perpendicular to gravity direction), keep going until a space is found or the number of positions examined = rt
for (j=0;j<rt;j++)
{
// Calculate overall gravity direction
GetGravityField(nx, ny, ptGrav, 1.0f, pGravX, pGravY);
// Scale gravity vector so that the largest component is 1 pixel
mv = std::max(fabsf(pGravX), fabsf(pGravY));
if (mv<0.0001f) break;
pGravX /= mv;
pGravY /= mv;
// Move 1 pixel perpendicularly to gravity
// r is +1/-1, to try moving left or right at random
if (j)
{
// Not quite the gravity direction
// Gravity direction + last change in gravity direction
// This makes liquid movement a bit less frothy, particularly for balls of liquid in radial gravity. With radial gravity, instead of just moving along a tangent, the attempted movement will follow the curvature a bit better.
nxf += r*(pGravY*2.0f-prev_pGravY);
nyf += -r*(pGravX*2.0f-prev_pGravX);
}
else
{
nxf += r*pGravY;
nyf += -r*pGravX;
}
prev_pGravX = pGravX;
prev_pGravY = pGravY;
// Check whether movement is allowed
nx = (int)(nxf+0.5f);
ny = (int)(nyf+0.5f);
if (nx<0 || ny<0 || nx>=XRES || ny >=YRES)
break;
if (TYP(pmap[ny][nx])!=t || bmap[ny/CELL][nx/CELL])
{
s = do_move(i, x, y, nxf, nyf);
if (s)
{
// Movement was successful
nx = (int)(parts[i].x+0.5f);
ny = (int)(parts[i].y+0.5f);
break;
}
// A particle of a different type, or a wall, was found. Stop trying to move any further horizontally unless the wall should be completely invisible to particles.
if (TYP(pmap[ny][nx])!=t || bmap[ny/CELL][nx/CELL]!=WL_STREAM)
break;
}
}
if (s==1)
{
// The particle managed to move horizontally, now try to move vertically (parallel to gravity direction)
// Keep going until the particle is blocked (by something that isn't the same element) or the number of positions examined = rt
clear_x = nx;
clear_y = ny;
for (j=0;j<rt;j++)
{
// Calculate overall gravity direction
GetGravityField(nx, ny, ptGrav, 1.0f, pGravX, pGravY);
// Scale gravity vector so that the largest component is 1 pixel
mv = std::max(fabsf(pGravX), fabsf(pGravY));
if (mv<0.0001f) break;
pGravX /= mv;
pGravY /= mv;
// Move 1 pixel in the direction of gravity
nxf += pGravX;
nyf += pGravY;
nx = (int)(nxf+0.5f);
ny = (int)(nyf+0.5f);
if (nx<0 || ny<0 || nx>=XRES || ny>=YRES)
break;
// If the space is anything except the same element (a wall, empty space, or occupied by a particle of a different element), try to move into it
if (TYP(pmap[ny][nx])!=t || bmap[ny/CELL][nx/CELL])
{
s = do_move(i, clear_x, clear_y, nxf, nyf);
if (s || TYP(pmap[ny][nx])!=t || bmap[ny/CELL][nx/CELL]!=WL_STREAM)
break; // found the edge of the liquid and movement into it succeeded, so stop moving down
}
}
}
else if (s==-1) {} // particle is out of bounds
else if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {} // try moving to the last clear position
else parts[i].flags |= FLAG_STAGNANT;
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
else
{
// if interpolation was done, try moving to last clear position
if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {}
else parts[i].flags |= FLAG_STAGNANT;
parts[i].vx *= elements[t].Collision;
parts[i].vy *= elements[t].Collision;
}
}
}
}
movedone:
continue;
}
//'f' was pressed (single frame)
if (framerender)
framerender--;
}
void Simulation::RecalcFreeParticles(bool do_life_dec)
{
int x, y, t;
int lastPartUsed = 0;
int lastPartUnused = -1;
memset(pmap, 0, sizeof(pmap));
memset(pmap_count, 0, sizeof(pmap_count));
memset(photons, 0, sizeof(photons));
NUM_PARTS = 0;
//the particle loop that resets the pmap/photon maps every frame, to update them.
for (int i = 0; i <= parts_lastActiveIndex; i++)
{
if (parts[i].type)
{
t = parts[i].type;
x = (int)(parts[i].x+0.5f);
y = (int)(parts[i].y+0.5f);
bool inBounds = false;
if (x>=0 && y>=0 && x<XRES && y<YRES)
{
if (elements[t].Properties & TYPE_ENERGY)
photons[y][x] = PMAP(i, t);
else
{
// Particles are sometimes allowed to go inside INVS and FILT
// To make particles collide correctly when inside these elements, these elements must not overwrite an existing pmap entry from particles inside them
if (!pmap[y][x] || (t!=PT_INVIS && t!= PT_FILT))
pmap[y][x] = PMAP(i, t);
// (there are a few exceptions, including energy particles - currently no limit on stacking those)
if (t!=PT_THDR && t!=PT_EMBR && t!=PT_FIGH && t!=PT_PLSM)
pmap_count[y][x]++;
}
inBounds = true;
}
lastPartUsed = i;
NUM_PARTS ++;
if (elementRecount && t >= 0 && t < PT_NUM && elements[t].Enabled)
elementCount[t]++;
//decrease particle life
if (do_life_dec && (!sys_pause || framerender))
{
if (t<0 || t>=PT_NUM || !elements[t].Enabled)
{
kill_part(i);
continue;
}
unsigned int elem_properties = elements[t].Properties;
if (parts[i].life>0 && (elem_properties&PROP_LIFE_DEC) && !(inBounds && bmap[y/CELL][x/CELL] == WL_STASIS && emap[y/CELL][x/CELL]<8))
{
// automatically decrease life
parts[i].life--;
if (parts[i].life<=0 && (elem_properties&(PROP_LIFE_KILL_DEC|PROP_LIFE_KILL)))
{
// kill on change to no life
kill_part(i);
continue;
}
}
else if (parts[i].life<=0 && (elem_properties&PROP_LIFE_KILL) && !(inBounds && bmap[y/CELL][x/CELL] == WL_STASIS && emap[y/CELL][x/CELL]<8))
{
// kill if no life
kill_part(i);
continue;
}
}
}
else
{
if (lastPartUnused<0) pfree = i;
else parts[lastPartUnused].life = i;
lastPartUnused = i;
}
}
if (lastPartUnused == -1)
{
pfree = (parts_lastActiveIndex>=(NPART-1)) ? -1 : parts_lastActiveIndex+1;
}
else
{
parts[lastPartUnused].life = (parts_lastActiveIndex>=(NPART-1)) ? -1 : parts_lastActiveIndex+1;
}
parts_lastActiveIndex = lastPartUsed;
if (elementRecount)
elementRecount = false;
}
void Simulation::SimulateGoL()
{
CGOL = 0;
for (int i = 0; i <= parts_lastActiveIndex; ++i)
{
auto &part = parts[i];
if (part.type != PT_LIFE)
{
continue;
}
auto x = int(part.x + 0.5f);
auto y = int(part.y + 0.5f);
if (x < CELL || y < CELL || x >= XRES - CELL || y >= YRES - CELL)
{
continue;
}
unsigned int golnum = part.ctype;
unsigned int ruleset = golnum;
if (golnum < NGOL)
{
ruleset = builtinGol[golnum].ruleset;
golnum += 1;
}
if (part.tmp2 == int((ruleset >> 17) & 0xF) + 1)
{
for (int yy = -1; yy <= 1; ++yy)
{
for (int xx = -1; xx <= 1; ++xx)
{
if (xx || yy)
{
// * Calculate address of the neighbourList, taking wraparound
// into account. The fact that the GOL space is 2 CELL's worth
// narrower in both dimensions than the simulation area makes
// this a bit awkward.
int ax = ((x + xx + XRES - 3 * CELL) % (XRES - 2 * CELL)) + CELL;
int ay = ((y + yy + YRES - 3 * CELL) % (YRES - 2 * CELL)) + CELL;
if (pmap[ay][ax] && TYP(pmap[ay][ax]) != PT_LIFE)
{
continue;
}
unsigned int (&neighbourList)[5] = gol[ay][ax];
// * Bump overall neighbour counter (bits 30..28) for the entire list.
neighbourList[0] += 1U << 28;
for (int l = 0; l < 5; ++l)
{
auto neighbourRuleset = neighbourList[l] & 0x001FFFFFU;
if (neighbourRuleset == golnum)
{
// * Bump population counter (bits 23..21) of the
// same kind of cell.
neighbourList[l] += 1U << 21;
break;
}
if (neighbourRuleset == 0)
{
// * Add the new kind of cell to the population. Both counters
// have a bias of -1, so they're intentionally initialised
// to 0 instead of 1 here. This is all so they can both
// fit in 3 bits.
neighbourList[l] = ((yy & 3) << 26) | ((xx & 3) << 24) | golnum;
break;
}
// * If after 5 iterations the cell still hasn't contributed
// to a list entry, it's surely a 6th kind of cell, meaning
// there could be at most 3 of it in the neighbourhood,
// as there are already 5 other kinds of cells present in
// the list. This in turn means that it couldn't possibly
// win the population ratio-based contest later on.
}
}
}
}
}
else
{
if (!(bmap[y / CELL][x / CELL] == WL_STASIS && emap[y / CELL][x / CELL] < 8))
{
part.tmp2 -= 1;
}
}
}
for (int y = CELL; y < YRES - CELL; ++y)
{
for (int x = CELL; x < XRES - CELL; ++x)
{
int r = pmap[y][x];
if (r && TYP(r) != PT_LIFE)
{
continue;
}
unsigned int (&neighbourList)[5] = gol[y][x];
auto nl0 = neighbourList[0];
if (r || nl0)
{
// * Get overall neighbour count (bits 30..28).
unsigned int neighbours = nl0 ? ((nl0 >> 28) & 7) + 1 : 0;
if (!(bmap[y / CELL][x / CELL] == WL_STASIS && emap[y / CELL][x / CELL] < 8))
{
if (r)
{
auto &part = parts[ID(r)];
unsigned int ruleset = part.ctype;
if (ruleset < NGOL)
{
ruleset = builtinGol[ruleset].ruleset;
}
if (!((ruleset >> neighbours) & 1) && part.tmp2 == int(ruleset >> 17) + 1)
{
// * Start death sequence.
part.tmp2 -= 1;
}
}
else
{
unsigned int golnumToCreate = 0xFFFFFFFFU;
unsigned int createFromEntry = 0U;
unsigned int majority = neighbours / 2 + neighbours % 2;
for (int l = 0; l < 5; ++l)
{
auto golnum = neighbourList[l] & 0x001FFFFFU;
if (!golnum)
{
break;
}
auto ruleset = golnum;
if (golnum - 1 < NGOL)
{
ruleset = builtinGol[golnum - 1].ruleset;
golnum -= 1;
}
if ((ruleset >> (neighbours + 8)) & 1 && ((neighbourList[l] >> 21) & 7) + 1 >= majority && golnum < golnumToCreate)
{
golnumToCreate = golnum;
createFromEntry = neighbourList[l];
}
}
if (golnumToCreate != 0xFFFFFFFFU)
{
// * 0x200000: No need to look for colours, they'll be set later anyway.
int i = create_part(-1, x, y, PT_LIFE, golnumToCreate | 0x200000);
if (i >= 0)
{
int xx = (createFromEntry >> 24) & 3;
int yy = (createFromEntry >> 26) & 3;
if (xx == 3) xx = -1;
if (yy == 3) yy = -1;
int ax = ((x - xx + XRES - 3 * CELL) % (XRES - 2 * CELL)) + CELL;
int ay = ((y - yy + YRES - 3 * CELL) % (YRES - 2 * CELL)) + CELL;
auto &sample = parts[ID(pmap[ay][ax])];
parts[i].dcolour = sample.dcolour;
parts[i].tmp = sample.tmp;
}
}
}
}
for (int l = 0; l < 5 && neighbourList[l]; ++l)
{
neighbourList[l] = 0;
}
}
}
}
for (int y = CELL; y < YRES - CELL; ++y)
{
for (int x = CELL; x < XRES - CELL; ++x)
{
int r = pmap[y][x];
if (r && TYP(r) == PT_LIFE && parts[ID(r)].tmp2 <= 0)
{
kill_part(ID(r));
}
}
}
}
void Simulation::CheckStacking()
{
bool excessive_stacking_found = false;
force_stacking_check = false;
for (int y = 0; y < YRES; y++)
{
for (int x = 0; x < XRES; x++)
{
// Use a threshold, since some particle stacking can be normal (e.g. BIZR + FILT)
// Setting pmap_count[y][x] > NPART means BHOL will form in that spot
if (pmap_count[y][x]>5)
{
if (bmap[y/CELL][x/CELL]==WL_EHOLE)
{
// Allow more stacking in E-hole
if (pmap_count[y][x]>1500)
{
pmap_count[y][x] = pmap_count[y][x] + NPART;
excessive_stacking_found = 1;
}
}
else if (pmap_count[y][x]>1500 || (unsigned int)rng.between(0, 1599) <= (pmap_count[y][x]+100))
{
pmap_count[y][x] = pmap_count[y][x] + NPART;
excessive_stacking_found = true;
}
}
}
}
if (excessive_stacking_found)
{
for (int i = 0; i <= parts_lastActiveIndex; i++)
{
if (parts[i].type)
{
int t = parts[i].type;
int x = (int)(parts[i].x+0.5f);
int y = (int)(parts[i].y+0.5f);
if (x>=0 && y>=0 && x<XRES && y<YRES && !(elements[t].Properties&TYPE_ENERGY))
{
if (pmap_count[y][x]>=NPART)
{
if (pmap_count[y][x]>NPART)
{
create_part(i, x, y, PT_NBHL);
parts[i].temp = MAX_TEMP;
parts[i].tmp = pmap_count[y][x]-NPART;//strength of grav field
if (parts[i].tmp>51200) parts[i].tmp = 51200;
pmap_count[y][x] = NPART;
}
else
{
kill_part(i);
}
}
}
}
}
}
}
//updates pmap, gol, and some other simulation stuff (but not particles)
void Simulation::BeforeSim()
{
if (!sys_pause||framerender)
{
air->update_air();
if(aheat_enable)
air->update_airh();
if(grav->IsEnabled())
{
grav->gravity_update_async();
//Get updated buffer pointers for gravity
gravx = &grav->gravx[0];
gravy = &grav->gravy[0];
gravp = &grav->gravp[0];
gravmap = &grav->gravmap[0];
}
if(emp_decor>0)
emp_decor -= emp_decor/25+2;
if(emp_decor < 0)
emp_decor = 0;
etrd_count_valid = false;
etrd_life0_count = 0;
currentTick++;
elementRecount |= !(currentTick%180);
if (elementRecount)
std::fill(elementCount, elementCount+PT_NUM, 0);
}
sandcolour_interface = (int)(20.0f*sin((float)sandcolour_frame*(TPT_PI_FLT/180.0f)));
sandcolour_frame = (sandcolour_frame+1)%360;
sandcolour = (int)(20.0f*sin((float)(frameCount)*(TPT_PI_FLT/180.0f)));
if (gravWallChanged)
{
grav->gravity_mask();
gravWallChanged = false;
}
if (debug_nextToUpdate == 0)
RecalcFreeParticles(true);
if (!sys_pause || framerender)
{
// decrease wall conduction, make walls block air and ambient heat
int x, y;
for (y = 0; y < YCELLS; y++)
{
for (x = 0; x < XCELLS; x++)
{
if (emap[y][x])
emap[y][x] --;
air->bmap_blockair[y][x] = (bmap[y][x]==WL_WALL || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_BLOCKAIR || (bmap[y][x]==WL_EWALL && !emap[y][x]));
air->bmap_blockairh[y][x] = (bmap[y][x]==WL_WALL || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_BLOCKAIR || bmap[y][x]==WL_GRAV || (bmap[y][x]==WL_EWALL && !emap[y][x])) ? 0x8:0;
}
}
// check for stacking and create BHOL if found
if (force_stacking_check || rng.chance(1, 10))
{
CheckStacking();
}
// LOVE and LOLZ element handling
if (elementCount[PT_LOVE] > 0 || elementCount[PT_LOLZ] > 0)
{
int nx, nnx, ny, nny, r, rt;
for (ny=0; ny<YRES-4; ny++)
{
for (nx=0; nx<XRES-4; nx++)
{
r=pmap[ny][nx];
if (!r)
{
continue;
}
else if ((ny<9||nx<9||ny>YRES-7||nx>XRES-10)&&(parts[ID(r)].type==PT_LOVE||parts[ID(r)].type==PT_LOLZ))
kill_part(ID(r));
else if (parts[ID(r)].type==PT_LOVE)
{
Element_LOVE_love[nx/9][ny/9] = 1;
}
else if (parts[ID(r)].type==PT_LOLZ)
{
Element_LOLZ_lolz[nx/9][ny/9] = 1;
}
}
}
for (nx=9; nx<=XRES-18; nx++)
{
for (ny=9; ny<=YRES-7; ny++)
{
if (Element_LOVE_love[nx/9][ny/9]==1)
{
for ( nnx=0; nnx<9; nnx++)
for ( nny=0; nny<9; nny++)
{
if (ny+nny>0&&ny+nny<YRES&&nx+nnx>=0&&nx+nnx<XRES)
{
rt=pmap[ny+nny][nx+nnx];
if (!rt&&Element_LOVE_RuleTable[nnx][nny]==1)
create_part(-1,nx+nnx,ny+nny,PT_LOVE);
else if (!rt)
continue;
else if (parts[ID(rt)].type==PT_LOVE&&Element_LOVE_RuleTable[nnx][nny]==0)
kill_part(ID(rt));
}
}
}
Element_LOVE_love[nx/9][ny/9]=0;
if (Element_LOLZ_lolz[nx/9][ny/9]==1)
{
for ( nnx=0; nnx<9; nnx++)
for ( nny=0; nny<9; nny++)
{
if (ny+nny>0&&ny+nny<YRES&&nx+nnx>=0&&nx+nnx<XRES)
{
rt=pmap[ny+nny][nx+nnx];
if (!rt&&Element_LOLZ_RuleTable[nny][nnx]==1)
create_part(-1,nx+nnx,ny+nny,PT_LOLZ);
else if (!rt)
continue;
else if (parts[ID(rt)].type==PT_LOLZ&&Element_LOLZ_RuleTable[nny][nnx]==0)
kill_part(ID(rt));
}
}
}
Element_LOLZ_lolz[nx/9][ny/9]=0;
}
}
}
// make WIRE work
if(elementCount[PT_WIRE] > 0)
{
for (int nx = 0; nx < XRES; nx++)
{
for (int ny = 0; ny < YRES; ny++)
{
int r = pmap[ny][nx];
if (!r)
continue;
if(parts[ID(r)].type == PT_WIRE)
parts[ID(r)].tmp = parts[ID(r)].ctype;
}
}
}
// update PPIP tmp?
if (Element_PPIP_ppip_changed)
{
for (int i = 0; i <= parts_lastActiveIndex; i++)
{
if (parts[i].type==PT_PPIP)
{
parts[i].tmp |= (parts[i].tmp&0xE0000000)>>3;
parts[i].tmp &= ~0xE0000000;
}
}
Element_PPIP_ppip_changed = 0;
}
// Simulate GoL
// GSPEED is frames per generation
if (elementCount[PT_LIFE]>0 && ++CGOL>=GSPEED)
{
SimulateGoL();
}
// wifi channel reseting
if (ISWIRE > 0)
{
for (int q = 0; q < (int)(MAX_TEMP-73.15f)/100+2; q++)
{
wireless[q][0] = wireless[q][1];
wireless[q][1] = 0;
}
ISWIRE--;
}
// spawn STKM and STK2
if (!player.spwn && player.spawnID >= 0)
create_part(-1, (int)parts[player.spawnID].x, (int)parts[player.spawnID].y, PT_STKM);
if (!player2.spwn && player2.spawnID >= 0)
create_part(-1, (int)parts[player2.spawnID].x, (int)parts[player2.spawnID].y, PT_STKM2);
// particle update happens right after this function (called separately)
}
}
void Simulation::AfterSim()
{
debug_mostRecentlyUpdated = -1;
if (emp_trigger_count)
{
// pitiful attempt at trying to keep code relating to a given element in the same file
void Element_EMP_Trigger(Simulation *sim, int triggerCount);
Element_EMP_Trigger(this, emp_trigger_count);
emp_trigger_count = 0;
}
frameCount += 1;
}
Simulation::~Simulation()
{
delete air;
}
Simulation::Simulation():
replaceModeSelected(0),
replaceModeFlags(0),
debug_nextToUpdate(0),
ISWIRE(0),
force_stacking_check(false),
emp_decor(0),
emp_trigger_count(0),
etrd_count_valid(false),
etrd_life0_count(0),
lightningRecreate(0),
gravWallChanged(false),
CGOL(0),
GSPEED(1),
edgeMode(0),
gravityMode(0),
customGravityX(0),
customGravityY(0),
legacy_enable(0),
aheat_enable(0),
water_equal_test(0),
sys_pause(0),
framerender(0),
pretty_powder(0),
sandcolour_frame(0),
deco_space(0)
{
int tportal_rx[] = {-1, 0, 1, 1, 1, 0,-1,-1};
int tportal_ry[] = {-1,-1,-1, 0, 1, 1, 1, 0};
memcpy(portal_rx, tportal_rx, sizeof(tportal_rx));
memcpy(portal_ry, tportal_ry, sizeof(tportal_ry));
currentTick = 0;
std::fill(elementCount, elementCount+PT_NUM, 0);
elementRecount = true;
//Create and attach gravity simulation
grav = Gravity::Create();
//Give air sim references to our data
grav->bmap = bmap;
//Gravity sim gives us maps to use
gravx = &grav->gravx[0];
gravy = &grav->gravy[0];
gravp = &grav->gravp[0];
gravmap = &grav->gravmap[0];
//Create and attach air simulation
air = new Air(*this);
//Give air sim references to our data
air->bmap = bmap;
air->emap = emap;
air->fvx = fvx;
air->fvy = fvy;
//Air sim gives us maps to use
vx = air->vx;
vy = air->vy;
pv = air->pv;
hv = air->hv;
msections = LoadMenus();
wtypes = LoadWalls();
platent = LoadLatent();
std::copy(GetElements().begin(), GetElements().end(), elements.begin());
tools = GetTools();
player.comm = 0;
player2.comm = 0;
init_can_move();
clear_sim();
grav->gravity_mask();
}
const Simulation::CustomGOLData *Simulation::GetCustomGOLByRule(int rule) const
{
// * Binary search. customGol is already sorted, see SetCustomGOL.
auto it = std::lower_bound(customGol.begin(), customGol.end(), rule, [](const CustomGOLData &item, int rule) {
return item.rule < rule;
});
if (it != customGol.end() && !(rule < it->rule))
{
return &*it;
}
return nullptr;
}
void Simulation::SetCustomGOL(std::vector<CustomGOLData> newCustomGol)
{
std::sort(newCustomGol.begin(), newCustomGol.end());
customGol = newCustomGol;
}
String Simulation::ElementResolve(int type, int ctype) const
{
if (type == PT_LIFE)
{
if (ctype >= 0 && ctype < NGOL)
{
return builtinGol[ctype].name;
}
auto *cgol = GetCustomGOLByRule(ctype);
if (cgol)
{
return cgol->nameString;
}
return SerialiseGOLRule(ctype);
}
else if (type >= 0 && type < PT_NUM)
return elements[type].Name;
return "Empty";
}
String Simulation::BasicParticleInfo(Particle const &sample_part) const
{
StringBuilder sampleInfo;
int type = sample_part.type;
int ctype = sample_part.ctype;
int storedCtype = sample_part.tmp4;
if (type == PT_LAVA && IsElement(ctype))
{
sampleInfo << "Molten " << ElementResolve(ctype, -1);
}
else if ((type == PT_PIPE || type == PT_PPIP) && IsElement(ctype))
{
if (ctype == PT_LAVA && IsElement(storedCtype))
{
sampleInfo << ElementResolve(type, -1) << " with molten " << ElementResolve(storedCtype, -1);
}
else
{
sampleInfo << ElementResolve(type, -1) << " with " << ElementResolve(ctype, storedCtype);
}
}
else
{
sampleInfo << ElementResolve(type, ctype);
}
return sampleInfo.Build();
}
int Simulation::remainder_p(int x, int y)
{
return (x % y) + (x>=0 ? 0 : y);
}
float Simulation::remainder_p(float x, float y)
{
return std::fmod(x, y) + (x>=0 ? 0 : y);
}
constexpr size_t ce_log2(size_t n)
{
return ((n < 2) ? 1 : 1 + ce_log2(n / 2));
}
static_assert(PMAPBITS <= 16, "PMAPBITS is too large");
// * This will technically fail in some cases where (XRES * YRES) << PMAPBITS would
// fit in 31 bits but multiplication is evil and wraps around without you knowing it.
// * Whoever runs into a problem with this (e.g. with XRES = 612, YRES = 384 and
// PMAPBITS = 13) should just remove the check and take responsibility otherwise.
static_assert(ce_log2(XRES) + ce_log2(YRES) + PMAPBITS <= 31, "not enough space in pmap");