#include #include #include #include #include #include int gravwl_timeout = 0; int wire_placed = 0; float player[28]; //[0] is a command cell, [3]-[18] are legs positions, [19]-[26] are accelerations, [27] shows if player was spawned float player2[28]; particle *parts; particle *cb_parts; int gravityMode = 0; // starts enabled in "vertical" mode... int airMode = 0; unsigned char bmap[YRES/CELL][XRES/CELL]; unsigned char emap[YRES/CELL][XRES/CELL]; unsigned char cb_bmap[YRES/CELL][XRES/CELL]; unsigned char cb_emap[YRES/CELL][XRES/CELL]; int pfree; unsigned pmap[YRES][XRES]; unsigned cb_pmap[YRES][XRES]; unsigned photons[YRES][XRES]; static int pn_junction_sprk(int x, int y, int pt) { unsigned r = pmap[y][x]; if ((r & 0xFF) != pt) return 0; r >>= 8; if (parts[r].type != pt) return 0; if (parts[r].life != 0) return 0; parts[r].ctype = pt; part_change_type(r,x,y,PT_SPRK); parts[r].life = 4; return 1; } static void photoelectric_effect(int nx, int ny)//create sparks from PHOT when hitting PSCN and NSCN { unsigned r = pmap[ny][nx]; if ((r&0xFF) == PT_PSCN) { if ((pmap[ny][nx-1] & 0xFF) == PT_NSCN || (pmap[ny][nx+1] & 0xFF) == PT_NSCN || (pmap[ny-1][nx] & 0xFF) == PT_NSCN || (pmap[ny+1][nx] & 0xFF) == PT_NSCN) pn_junction_sprk(nx, ny, PT_PSCN); } } unsigned char can_move[PT_NUM][PT_NUM]; void init_can_move() { // can_move[moving type][type at destination] // 0 = No move/Bounce // 1 = Swap // 2 = Both particles occupy the same space. // 3 = Varies, go run some extra checks int t, rt; for (rt=0;rt=XRES || ny>=YRES) return 0; r = pmap[ny][nx]; if (r && (r>>8)>8].type; if (rr) *rr = r; if (pt>=PT_NUM || (r&0xFF)>=PT_NUM) return 0; result = can_move[pt][r&0xFF]; if (result==3) { if (pt==PT_PHOT && (r&0xFF)==PT_LCRY) result = (parts[r>>8].life > 5)? 2 : 0; if ((r&0xFF)==PT_INVIS) { if (pv[ny/CELL][nx/CELL]>4.0f || pv[ny/CELL][nx/CELL]<-4.0f) result = 2; else result = 0; } } if (bmap[ny/CELL][nx/CELL]) { if (bmap[ny/CELL][nx/CELL]==WL_ALLOWGAS && ptypes[pt].falldown!=0 && pt!=PT_FIRE && pt!=PT_SMKE) return 0; if (bmap[ny/CELL][nx/CELL]==WL_ALLOWLIQUID && ptypes[pt].falldown!=2) return 0; if (bmap[ny/CELL][nx/CELL]==WL_ALLOWSOLID && ptypes[pt].falldown!=1) return 0; // blocking by WL_WALL, WL_WALLELEC and unpowered WL_EWALL is currently done by putting 0x7FFFFFFF in pmap if (bmap[ny/CELL][nx/CELL]==WL_ALLOWAIR) return 0; if (bmap[ny/CELL][nx/CELL]==WL_EHOLE && !emap[ny/CELL][nx/CELL]) return 2; } return result; } int try_move(int i, int x, int y, int nx, int ny) { unsigned r, e; if (x==nx && y==ny) return 1; if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) return 1; e = eval_move(parts[i].type, nx, ny, &r); if ((r&0xFF)==PT_BOMB && parts[i].type==PT_BOMB && parts[i].tmp == 1) e = 2; /* half-silvered mirror */ if (!e && parts[i].type==PT_PHOT && (((r&0xFF)==PT_BMTL && rand()>8].temp = parts[i].temp; if ((r & 0xFF) < PT_NUM && ptypes[r&0xFF].hconduct) parts[i].temp = parts[r>>8].temp = restrict_flt((parts[r>>8].temp+parts[i].temp)/2, MIN_TEMP, MAX_TEMP); } if (parts[i].type==PT_NEUT && ((r&0xFF)==PT_CLNE || (r&0xFF)==PT_PCLN || (r&0xFF)==PT_BCLN || (r&0xFF)==PT_PBCN)) { if (!parts[r>>8].ctype) parts[r>>8].ctype = PT_NEUT; } if ((r&0xFF)==PT_PRTI && (parts[i].type==PT_PHOT || parts[i].type==PT_NEUT)) { int nnx, count; if (nx-x<0) { if (ny-y<0) count = 1; else if (ny-y==0) count = 2; else count = 3; } else if (nx-x==0) { if (ny-y<0) count = 4; else count = 5; } else { if (ny-y<0) count = 6; else if (ny-y==0) count = 7; else count = 8; } parts[r>>8].tmp = (int)((parts[r>>8].temp-73.15f)/100+1); if (parts[r>>8].tmp>=CHANNELS) parts[r>>8].tmp = CHANNELS-1; else if (parts[r>>8].tmp<0) parts[r>>8].tmp = 0; for ( nnx=0; nnx<80; nnx++) if (!portalp[parts[r>>8].tmp][count-1][nnx].type) { portalp[parts[r>>8].tmp][count-1][nnx] = parts[i]; parts[i].type=PT_NONE; break; } } return 0; } if (e == 2) //if occupy same space { if (parts[i].type == PT_PHOT && (r&0xFF)==PT_GLOW && !parts[r>>8].life) if (rand() < RAND_MAX/30) { parts[r>>8].life = 120; create_gain_photon(i); } if (parts[i].type == PT_PHOT && (r&0xFF)==PT_FILT) { int temp_bin = (int)((parts[r>>8].temp-273.0f)*0.025f); if (temp_bin < 0) temp_bin = 0; if (temp_bin > 25) temp_bin = 25; parts[i].ctype = 0x1F << temp_bin; } if (parts[i].type == PT_NEUT && (r&0xFF)==PT_GLAS) { if (rand() < RAND_MAX/10) create_cherenkov_photon(i); } if (parts[i].type == PT_PHOT && (r&0xFF)==PT_INVIS && pv[ny/CELL][nx/CELL]<=4.0f && pv[ny/CELL][nx/CELL]>=-4.0f) { part_change_type(i,x,y,PT_NEUT); parts[i].ctype = 0; } if ((parts[i].type==PT_BIZR||parts[i].type==PT_BIZRG) && (r&0xFF)==PT_FILT) { int temp_bin = (int)((parts[r>>8].temp-273.0f)*0.025f); if (temp_bin < 0) temp_bin = 0; if (temp_bin > 25) temp_bin = 25; parts[i].ctype = 0x1F << temp_bin; } return 1; } //else e=1 , we are trying to swap the particles, return 0 no swap/move, 1 is still overlap/move, because the swap takes place later if ((r&0xFF)==PT_VOID) //this is where void eats particles { if (parts[i].type == PT_STKM) { player[27] = 0; } if (parts[i].type == PT_STKM2) { player2[27] = 0; } parts[i].type=PT_NONE; return 0; } if ((r&0xFF)==PT_BHOL || (r&0xFF)==PT_NBHL) //this is where blackhole eats particles { if (parts[i].type == PT_STKM) { player[27] = 0; } if (parts[i].type == PT_STKM2) { player2[27] = 0; } parts[i].type=PT_NONE; if (!legacy_enable) { parts[r>>8].temp = restrict_flt(parts[r>>8].temp+parts[i].temp/2, MIN_TEMP, MAX_TEMP);//3.0f; } return 0; } if (((r&0xFF)==PT_WHOL||(r&0xFF)==PT_NWHL) && parts[i].type==PT_ANAR) //whitehole eats anar { parts[i].type=PT_NONE; if (!legacy_enable) { parts[r>>8].temp = restrict_flt(parts[r>>8].temp- (MAX_TEMP-parts[i].temp)/2, MIN_TEMP, MAX_TEMP); } return 0; } if (parts[i].type==PT_CNCT && y> 8; //e is now the particle number at r (pmap[ny][nx]) if (r && e>8)>=NPART) return 0; if ((s&0xFF) && (s&0xFF)>8].type; parts[s>>8].x = nx; parts[s>>8].y = ny; } else pmap[ny][nx] = 0; parts[e].x = x; parts[e].y = y; pmap[y][x] = (e<<8)|parts[e].type; return 1; } if ((pmap[ny][nx]>>8)==e) pmap[ny][nx] = 0; parts[e].x += x-nx; parts[e].y += y-ny; pmap[(int)(parts[e].y+0.5f)][(int)(parts[e].x+0.5f)] = (e<<8)|parts[e].type; } return 1; } // try to move particle, and if successful update pmap and parts[i].x,y int do_move(int i, int x, int y, float nxf, float nyf) { int nx = (int)(nxf+0.5f), ny = (int)(nyf+0.5f); int result = try_move(i, x, y, nx, ny); if (result) { int t = parts[i].type; parts[i].x = nxf; parts[i].y = nyf; if (ny!=y || nx!=x) { if ((pmap[y][x]>>8)==i) pmap[y][x] = 0; else if ((photons[y][x]>>8)==i) photons[y][x] = 0; if (nx=XRES-CELL || ny=YRES-CELL)//kill_part if particle is out of bounds { kill_part(i); return -1; } if (t==PT_PHOT||t==PT_NEUT) photons[ny][nx] = t|(i<<8); else if (t) pmap[ny][nx] = t|(i<<8); } } return result; } static unsigned direction_to_map(float dx, float dy, int t) { // TODO: // Adding extra directions causes some inaccuracies. // Not adding them causes problems with some diagonal surfaces (photons absorbed instead of reflected). // For now, don't add them. // Solution may involve more intelligent setting of initial i0 value in find_next_boundary? // or rewriting normal/boundary finding code return (dx >= 0) | (((dx + dy) >= 0) << 1) | /* 567 */ ((dy >= 0) << 2) | /* 4+0 */ (((dy - dx) >= 0) << 3) | /* 321 */ ((dx <= 0) << 4) | (((dx + dy) <= 0) << 5) | ((dy <= 0) << 6) | (((dy - dx) <= 0) << 7); /* return (dx >= -0.001) | (((dx + dy) >= -0.001) << 1) | // 567 ((dy >= -0.001) << 2) | // 4+0 (((dy - dx) >= -0.001) << 3) | // 321 ((dx <= 0.001) << 4) | (((dx + dy) <= 0.001) << 5) | ((dy <= 0.001) << 6) | (((dy - dx) <= 0.001) << 7); }*/ } static int is_blocking(int t, int x, int y) { if (t & REFRACT) { if (x<0 || y<0 || x>=XRES || y>=YRES) return 0; if ((pmap[y][x] & 0xFF) == PT_GLAS) return 1; return 0; } return !eval_move(t, x, y, NULL); } static int is_boundary(int pt, int x, int y) { if (!is_blocking(pt,x,y)) return 0; if (is_blocking(pt,x,y-1) && is_blocking(pt,x,y+1) && is_blocking(pt,x-1,y) && is_blocking(pt,x+1,y)) return 0; return 1; } static int find_next_boundary(int pt, int *x, int *y, int dm, int *em) { static int dx[8] = {1,1,0,-1,-1,-1,0,1}; static int dy[8] = {0,1,1,1,0,-1,-1,-1}; static int de[8] = {0x83,0x07,0x0E,0x1C,0x38,0x70,0xE0,0xC1}; int i, ii, i0; if (*x <= 0 || *x >= XRES-1 || *y <= 0 || *y >= YRES-1) return 0; if (*em != -1) { i0 = *em; dm &= de[i0]; } else i0 = 0; for (ii=0; ii<8; ii++) { i = (ii + i0) & 7; if ((dm & (1 << i)) && is_boundary(pt, *x+dx[i], *y+dy[i])) { *x += dx[i]; *y += dy[i]; *em = i; return 1; } } return 0; } int get_normal(int pt, int x, int y, float dx, float dy, float *nx, float *ny) { int ldm, rdm, lm, rm; int lx, ly, lv, rx, ry, rv; int i, j; float r, ex, ey; if (!dx && !dy) return 0; if (!is_boundary(pt, x, y)) return 0; ldm = direction_to_map(-dy, dx, pt); rdm = direction_to_map(dy, -dx, pt); lx = rx = x; ly = ry = y; lv = rv = 1; lm = rm = -1; j = 0; for (i=0; i= NORMAL_INTERP) return 0; if (pt == PT_PHOT) photoelectric_effect(x, y); return get_normal(pt, x, y, dx, dy, nx, ny); } //For soap only void detach(int i) { if ((parts[i].ctype&2) == 2) { if ((parts[parts[i].tmp].ctype&4) == 4) parts[parts[i].tmp].ctype ^= 4; } if ((parts[i].ctype&4) == 4) { if ((parts[parts[i].tmp2].ctype&2) == 2) parts[parts[i].tmp2].ctype ^= 2; } parts[i].ctype = 0; } void kill_part(int i)//kills particle number i { int x, y; x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); if (parts[i].type == PT_STKM) { player[27] = 0; } if (parts[i].type == PT_STKM2) { player2[27] = 0; } if (parts[i].type == PT_SPAWN) { ISSPAWN1 = 0; } if (parts[i].type == PT_SPAWN2) { ISSPAWN2 = 0; } if (parts[i].type == PT_SOAP) { detach(i); } if (x>=0 && y>=0 && x>8)==i) pmap[y][x] = 0; else if ((photons[y][x]>>8)==i) photons[y][x] = 0; } parts[i].type = PT_NONE; parts[i].life = pfree; pfree = i; } #if defined(WIN32) && !defined(__GNUC__) _inline void part_change_type(int i, int x, int y, int t) #else inline void part_change_type(int i, int x, int y, int t)//changes the type of particle number i, to t. This also changes pmap at the same time. #endif { if (x<0 || y<0 || x>=XRES || y>=YRES || i>=NPART || t<0 || t>=PT_NUM) return; if (!ptypes[t].enabled) t = PT_NONE; if (parts[i].type == PT_STKM) player[27] = 0; if (parts[i].type == PT_STKM2) player2[27] = 0; parts[i].type = t; if (t==PT_PHOT || t==PT_NEUT) { photons[y][x] = t|(i<<8); if ((pmap[y][x]>>8)==i) pmap[y][x] = 0; } else { pmap[y][x] = t|(i<<8); if ((photons[y][x]>>8)==i) photons[y][x] = 0; } } #if defined(WIN32) && !defined(__GNUC__) _inline int create_part(int p, int x, int y, int tv) #else inline int create_part(int p, int x, int y, int tv)//the function for creating a particle, use p=-1 for creating a new particle, -2 is from a brush, or a particle number to replace a particle. #endif { int i; int t = tv & 0xFF; int v = (tv >> 8) & 0xFF; if (x<0 || y<0 || x>=XRES || y>=YRES || ((t<0 || t>=PT_NUM)&&t!=SPC_HEAT&&t!=SPC_COOL&&t!=SPC_AIR&&t!=SPC_VACUUM)) return -1; if (t>=0 && t>8].temp>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp + 0.1f, MIN_TEMP, MAX_TEMP); } else if ((sdl_mod & (KMOD_SHIFT)) && (sdl_mod & (KMOD_CTRL))) { parts[pmap[y][x]>>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp + 50.0f, MIN_TEMP, MAX_TEMP); } else { parts[pmap[y][x]>>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp + 4.0f, MIN_TEMP, MAX_TEMP); } } if (t==SPC_COOL&&parts[pmap[y][x]>>8].temp>MIN_TEMP) { if ((pmap[y][x]&0xFF)==PT_PUMP || (pmap[y][x]&0xFF)==PT_GPMP) { parts[pmap[y][x]>>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp - 0.1f, MIN_TEMP, MAX_TEMP); } else if ((sdl_mod & (KMOD_SHIFT)) && (sdl_mod & (KMOD_CTRL))) { parts[pmap[y][x]>>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp - 50.0f, MIN_TEMP, MAX_TEMP); } else { parts[pmap[y][x]>>8].temp = restrict_flt(parts[pmap[y][x]>>8].temp - 4.0f, MIN_TEMP, MAX_TEMP); } } return pmap[y][x]>>8; } else { return -1; } } if (t==SPC_AIR) { pv[y/CELL][x/CELL] += 0.03f; if (y+CELL>8)>=NPART || !((pmap[y][x]&0xFF)==PT_INST||(ptypes[pmap[y][x]&0xFF].properties&PROP_CONDUCTS))) return -1; if (parts[pmap[y][x]>>8].life!=0) return -1; parts[pmap[y][x]>>8].type = PT_SPRK; parts[pmap[y][x]>>8].life = 4; parts[pmap[y][x]>>8].ctype = pmap[y][x]&0xFF; pmap[y][x] = (pmap[y][x]&~0xFF) | PT_SPRK; return pmap[y][x]>>8; } if (t==PT_SPAWN&&ISSPAWN1) return -1; if (t==PT_SPAWN2&&ISSPAWN2) return -1; if (p==-1)//creating from anything but brush { if (pmap[y][x]) { if ((pmap[y][x]&0xFF)!=PT_SPAWN&&(pmap[y][x]&0xFF)!=PT_SPAWN2) { if (t!=PT_STKM&&t!=PT_STKM2) { return -1; } } } if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else if (p==-2)//creating from brush { if (pmap[y][x]) { if (( (pmap[y][x]&0xFF)==PT_CLNE|| (pmap[y][x]&0xFF)==PT_BCLN|| ((pmap[y][x]&0xFF)==PT_PCLN&&t!=PT_PSCN&&t!=PT_NSCN)|| ((pmap[y][x]&0xFF)==PT_PBCN&&t!=PT_PSCN&&t!=PT_NSCN) )&&( t!=PT_CLNE&&t!=PT_PCLN&& t!=PT_BCLN&&t!=PT_STKM&& t!=PT_STKM2&&t!=PT_PBCN) ) { parts[pmap[y][x]>>8].ctype = t; if (t==PT_LIFE && v>8].tmp = v; } return -1; } if (photons[y][x] && (t==PT_PHOT||t==PT_NEUT)) return -1; if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else if (p==-3)//skip pmap checks, e.g. for sing explosion { if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else i = p; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; parts[i].dcolour = 0; if (t==PT_GLAS) { parts[i].pavg[1] = pv[y/CELL][x/CELL]; } else if (t==PT_QRTZ) { parts[i].pavg[1] = pv[y/CELL][x/CELL]; } else { parts[i].pavg[0] = 0.0f; parts[i].pavg[1] = 0.0f; } if (t!=PT_STKM&&t!=PT_STKM2)//set everything to default values first, except for stickman. { parts[i].x = (float)x; parts[i].y = (float)y; parts[i].type = t; parts[i].vx = 0; parts[i].vy = 0; parts[i].life = 0; parts[i].ctype = 0; parts[i].temp = ptypes[t].heat; parts[i].tmp = 0; parts[i].tmp2 = 0; } if (t==PT_SOAP) { parts[i].tmp = -1; parts[i].tmp2 = -1; } //now set various properties that we want at spawn. if (t==PT_ACID) { parts[i].life = 75; } /*Testing if(t==PT_WOOD){ parts[i].life = 150; } End Testing*/ if (t==PT_WARP) { parts[i].life = rand()%95+70; } if (t==PT_FUSE) { parts[i].life = 50; parts[i].tmp = 50; } /*if (ptypes[t].properties&PROP_LIFE) { int r; for (r = 0; r=XRES || ny>=YRES) return; if ((pmap[ny][nx] & 0xFF) != PT_GLOW) return; pfree = parts[i].life; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; parts[i].type = PT_PHOT; parts[i].life = 680; parts[i].x = xx; parts[i].y = yy; parts[i].vx = parts[pp].vx; parts[i].vy = parts[pp].vy; parts[i].temp = parts[pmap[ny][nx] >> 8].temp; parts[i].tmp = 0; parts[i].pavg[0] = parts[i].pavg[1] = 0.0f; photons[ny][nx] = PT_PHOT|(i<<8); temp_bin = (int)((parts[i].temp-273.0f)*0.25f); if (temp_bin < 0) temp_bin = 0; if (temp_bin > 25) temp_bin = 25; parts[i].ctype = 0x1F << temp_bin; } static void create_cherenkov_photon(int pp)//photons from NEUT going through GLAS { int i, lr, nx, ny; float r, eff_ior; if (pfree == -1) return; i = pfree; nx = (int)(parts[pp].x + 0.5f); ny = (int)(parts[pp].y + 0.5f); if ((pmap[ny][nx] & 0xFF) != PT_GLAS) return; if (hypotf(parts[pp].vx, parts[pp].vy) < 1.44f) return; pfree = parts[i].life; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; lr = rand() % 2; parts[i].type = PT_PHOT; parts[i].ctype = 0x00000F80; parts[i].life = 680; parts[i].x = parts[pp].x; parts[i].y = parts[pp].y; parts[i].temp = parts[pmap[ny][nx] >> 8].temp; parts[i].tmp = 0; parts[i].pavg[0] = parts[i].pavg[1] = 0.0f; photons[ny][nx] = PT_PHOT|(i<<8); if (lr) { parts[i].vx = parts[pp].vx - 2.5f*parts[pp].vy; parts[i].vy = parts[pp].vy + 2.5f*parts[pp].vx; } else { parts[i].vx = parts[pp].vx + 2.5f*parts[pp].vy; parts[i].vy = parts[pp].vy - 2.5f*parts[pp].vx; } /* photons have speed of light. no discussion. */ r = 1.269 / hypotf(parts[i].vx, parts[i].vy); parts[i].vx *= r; parts[i].vy *= r; } #if defined(WIN32) && !defined(__GNUC__) _inline void delete_part(int x, int y) #else inline void delete_part(int x, int y)//calls kill_part with the particle located at x,y #endif { unsigned i; if (x<0 || y<0 || x>=XRES || y>=YRES) return; if (photons[y][x]) { i = photons[y][x]; } else { i = pmap[y][x]; } if (!i || (i>>8)>=NPART) return; if ((parts[i>>8].type==SLALT)||SLALT==0)//specific deletiom { kill_part(i>>8); } else if (ptypes[parts[i>>8].type].menusection==SEC)//specific menu deletion { kill_part(i>>8); } else return; } #if defined(WIN32) && !defined(__GNUC__) _inline int is_wire(int x, int y) #else inline int is_wire(int x, int y) #endif { return bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE; } #if defined(WIN32) && !defined(__GNUC__) _inline int is_wire_off(int x, int y) #else inline int is_wire_off(int x, int y) #endif { return (bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE) && emap[y][x]<8; } int get_wavelength_bin(int *wm) { int i, w0=30, wM=0; if (!*wm) return -1; for (i=0; i<30; i++) if (*wm & (1< wM) wM = i; } if (wM-w0 < 5) return (wM+w0)/2; i = rand() % (wM-w0-3); i += w0; *wm &= 0x1F << i; return i + 2; } void set_emap(int x, int y) { int x1, x2; if (!is_wire_off(x, y)) return; // go left as far as possible x1 = x2 = x; while (x1>0) { if (!is_wire_off(x1-1, y)) break; x1--; } while (x21 && x1==x2 && is_wire(x1-1, y-1) && is_wire(x1, y-1) && is_wire(x1+1, y-1) && !is_wire(x1-1, y-2) && is_wire(x1, y-2) && !is_wire(x1+1, y-2)) set_emap(x1, y-2); else if (y>0) for (x=x1; x<=x2; x++) if (is_wire_off(x, y-1)) { if (x==x1 || x==x2 || y>=YRES/CELL-1 || is_wire(x-1, y-1) || is_wire(x+1, y-1) || is_wire(x-1, y+1) || !is_wire(x, y+1) || is_wire(x+1, y+1)) set_emap(x, y-1); } if (y>8) < NPART && pmr) return parts[pmr>>8].type; else return PT_NONE; } else { int pmr2 = pmap[(int)((parts[ci].y + parts[ni].y)/2+0.5f)][(int)((parts[ci].x + parts[ni].x)/2+0.5f)];//seems to be more accurate. if ((pmr2>>8) < NPART && pmr2) { if (parts[pmr2>>8].type==t) return t; } else return PT_NONE; } return PT_NONE; } int nearest_part(int ci, int t) { int distance = MAX_DISTANCE; int ndistance = 0; int id = -1; int i = 0; int cx = (int)parts[ci].x; int cy = (int)parts[ci].y; for (i=0; i<=parts_lastActiveIndex; i++) { if (parts[i].type==t&&!parts[i].life&&i!=ci) { ndistance = abs(cx-parts[i].x)+abs(cy-parts[i].y);// Faster but less accurate Older: sqrt(pow(cx-parts[i].x, 2)+pow(cy-parts[i].y, 2)); if (ndistance0 && GRAV_G==0) { GRAV_R--; GRAV_B++; } if (GRAV_B >0 && GRAV_R==0) { GRAV_B--; GRAV_G++; } if (GRAV_G >0 && GRAV_B==0) { GRAV_G--; GRAV_R++; } if (GRAV_R2 >0 && GRAV_G2==0) { GRAV_R2--; GRAV_B2++; } if (GRAV_B2 >0 && GRAV_R2==0) { GRAV_B2--; GRAV_G2++; } if (GRAV_G2 >0 && GRAV_B2==0) { GRAV_G2--; GRAV_R2++; } } if (GRAV>180) GRAV = 0; } if (ISLOVE==1)//LOVE element handling { ISLOVE = 0; for (ny=0; ny>8)>=NPART || !r) { continue; } else if ((ny<9||nx<9||ny>YRES-7||nx>XRES-10)&&parts[r>>8].type==PT_LOVE) kill_part(r>>8); else if (parts[r>>8].type==PT_LOVE) { love[nx/9][ny/9] = 1; } } } for (nx=9; nx<=XRES-18; nx++) { for (ny=9; ny<=YRES-7; ny++) { if (love[nx/9][ny/9]==1) { for ( nnx=0; nnx<9; nnx++) for ( nny=0; nny<9; nny++) { if (ny+nny>0&&ny+nny=0&&nx+nnx>8)>=NPART) { continue; } if (!rt&&loverule[nnx][nny]==1) create_part(-1,nx+nnx,ny+nny,PT_LOVE); else if (!rt) continue; else if (parts[rt>>8].type==PT_LOVE&&loverule[nnx][nny]==0) kill_part(rt>>8); } } } love[nx/9][ny/9]=0; } } } if (ISLOLZ==1)//LOLZ element handling { ISLOLZ = 0; for (ny=0; ny>8)>=NPART || !r) { continue; } else if ((ny<9||nx<9||ny>YRES-7||nx>XRES-10)&&parts[r>>8].type==PT_LOLZ) kill_part(r>>8); else if (parts[r>>8].type==PT_LOLZ) { lolz[nx/9][ny/9] = 1; } } } for (nx=9; nx<=XRES-18; nx++) { for (ny=9; ny<=YRES-7; ny++) { if (lolz[nx/9][ny/9]==1) { for ( nnx=0; nnx<9; nnx++) for ( nny=0; nny<9; nny++) { if (ny+nny>0&&ny+nny=0&&nx+nnx>8)>=NPART) { continue; } if (!rt&&lolzrule[nny][nnx]==1) create_part(-1,nx+nnx,ny+nny,PT_LOLZ); else if (!rt) continue; else if (parts[rt>>8].type==PT_LOLZ&&lolzrule[nny][nnx]==0) kill_part(rt>>8); } } } lolz[nx/9][ny/9]=0; } } } //wire! if(wire_placed == 1) { wire_placed = 0; for (nx=0; nx>8)>=NPART || !r) continue; if(parts[r>>8].type==PT_WIRE) parts[r>>8].tmp=parts[r>>8].ctype; } } } //game of life! if (ISGOL==1&&++CGOL>=GSPEED)//GSPEED is frames per generation { int createdsomething = 0; CGOL=0; ISGOL=0; for (nx=CELL; nx>8)>=NPART || !r) { gol[nx][ny] = 0; continue; } else { //for ( golnum=1; golnum<=NGOL; golnum++) //This shouldn't be necessary any more. //{ if (parts[r>>8].type==PT_LIFE/* && parts[r>>8].ctype==golnum-1*/) { golnum = parts[r>>8].ctype+1; if (golnum<=0 || golnum>NGOLALT) { parts[r>>8].type = PT_NONE; continue; } if (parts[r>>8].tmp == grule[golnum][9]-1) { gol[nx][ny] = golnum; for ( nnx=-1; nnx<2; nnx++) { for ( nny=-1; nny<2; nny++)//it will count itself as its own neighbor, which is needed, but will have 1 extra for delete check { rt = pmap[((ny+nny+YRES-3*CELL)%(YRES-2*CELL))+CELL][((nx+nnx+XRES-3*CELL)%(XRES-2*CELL))+CELL]; if (!rt || (rt&0xFF)==PT_LIFE) { gol2[((nx+nnx+XRES-3*CELL)%(XRES-2*CELL))+CELL][((ny+nny+YRES-3*CELL)%(YRES-2*CELL))+CELL][golnum] ++; gol2[((nx+nnx+XRES-3*CELL)%(XRES-2*CELL))+CELL][((ny+nny+YRES-3*CELL)%(YRES-2*CELL))+CELL][0] ++; } } } } else { parts[r>>8].tmp --; if (parts[r>>8].tmp<=0) parts[r>>8].type = PT_NONE;//using kill_part makes it not work } } //} } } } for (nx=CELL; nx>8)>=NPART) continue; for ( golnum = 1; golnum<=NGOL; golnum++) { goldelete = neighbors; if (gol[nx][ny]==0&&grule[golnum][goldelete]>=2&&gol2[nx][ny][golnum]>=(goldelete%2)+goldelete/2) { if (create_part(-1, nx, ny, PT_LIFE|((golnum-1)<<8))) createdsomething = 1; } else if (gol[nx][ny]==golnum&&(grule[golnum][goldelete-1]==0||grule[golnum][goldelete-1]==2))//subtract 1 because it counted itself { if (parts[r>>8].tmp==grule[golnum][9]-1) parts[r>>8].tmp --; } if (r && parts[r>>8].tmp<=0) parts[r>>8].type = PT_NONE;//using kill_part makes it not work } for ( z = 0; z<=NGOL; z++) gol2[nx][ny][z] = 0;//this improves performance A LOT compared to the memset, i was getting ~23 more fps with this. } } if (createdsomething) GENERATION ++; //memset(gol2, 0, sizeof(gol2)); } if (ISWIRE==1)//wifi channel reseting { for ( q = 0; q<(int)(MAX_TEMP-73.15f)/100+2; q++) if (!wireless[q][1]) { wireless[q][0] = 0; } else wireless[q][1] = 0; } //the main particle loop function, goes over all particles. for (i=0; i<=parts_lastActiveIndex; i++) if (parts[i].type) { lx = parts[i].x; ly = parts[i].y; t = parts[i].type; if (t<0 || t>=PT_NUM) { kill_part(i); continue; } //printf("parts[%d].type: %d\n", i, parts[i].type); if (parts[i].life>0 && (ptypes[t].properties&PROP_LIFE_DEC)) { // automatically decrease life parts[i].life--; if (parts[i].life<=0 && (ptypes[t].properties&(PROP_LIFE_KILL_DEC|PROP_LIFE_KILL))) { // kill on change to no life kill_part(i); continue; } } else if (parts[i].life<=0 && (ptypes[t].properties&PROP_LIFE_KILL)) { // kill if no life kill_part(i); continue; } x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); //this kills any particle out of the screen, or in a wall where it isn't supposed to go if (x=XRES-CELL || y>=YRES-CELL || (bmap[y/CELL][x/CELL] && (bmap[y/CELL][x/CELL]==WL_WALL || bmap[y/CELL][x/CELL]==WL_WALLELEC || bmap[y/CELL][x/CELL]==WL_ALLOWAIR || (bmap[y/CELL][x/CELL]==WL_DESTROYALL) || (bmap[y/CELL][x/CELL]==WL_ALLOWLIQUID && ptypes[t].falldown!=2) || (bmap[y/CELL][x/CELL]==WL_ALLOWSOLID && ptypes[t].falldown!=1) || (bmap[y/CELL][x/CELL]==WL_ALLOWGAS && ptypes[t].falldown!=0 && parts[i].type!=PT_FIRE && parts[i].type!=PT_SMKE && parts[i].type!=PT_HFLM) || (bmap[y/CELL][x/CELL]==WL_DETECT && (t==PT_METL || t==PT_SPRK)) || (bmap[y/CELL][x/CELL]==WL_EWALL && !emap[y/CELL][x/CELL])) && (t!=PT_STKM) && (t!=PT_STKM2))) { kill_part(i); continue; } if (bmap[y/CELL][x/CELL]==WL_DETECT && emap[y/CELL][x/CELL]<8) set_emap(x/CELL, y/CELL); //adding to velocity from the particle's velocity vx[y/CELL][x/CELL] = vx[y/CELL][x/CELL]*ptypes[t].airloss + ptypes[t].airdrag*parts[i].vx; vy[y/CELL][x/CELL] = vy[y/CELL][x/CELL]*ptypes[t].airloss + ptypes[t].airdrag*parts[i].vy; if (t==PT_GAS||t==PT_NBLE) { if (pv[y/CELL][x/CELL]<3.5f) pv[y/CELL][x/CELL] += ptypes[t].hotair*(3.5f-pv[y/CELL][x/CELL]); if (y+CELL= 0 && y-2 < YRES && (ptypes[t].properties&TYPE_LIQUID)) {//some heat convection for liquids r = pmap[y-2][x]; if (!((r>>8)>=NPART || !r || parts[i].type != (r&0xFF))) { if (parts[i].temp>parts[r>>8].temp) { swappage = parts[i].temp; parts[i].temp = parts[r>>8].temp; parts[r>>8].temp = swappage; } } } //heat transfer code h_count = 0; #ifdef REALHEAT if (t&&(t!=PT_HSWC||parts[i].life==10)) { float c_Cm = 0.0f; #else if (t&&(t!=PT_HSWC||parts[i].life==10)&&ptypes[t].hconduct>(rand()%250)) { float c_Cm = 0.0f; #endif if (aheat_enable) { c_heat = (hv[y/CELL][x/CELL]-parts[i].temp)*0.04; parts[i].temp += c_heat; hv[y/CELL][x/CELL] -= c_heat; } c_heat = 0.0f; for (j=0; j<8; j++) { surround_hconduct[j] = i; r = surround[j]; if ((r>>8)>=NPART || !r) continue; rt = r&0xFF; if (rt&&ptypes[rt].hconduct&&(rt!=PT_HSWC||parts[r>>8].life==10) &&(t!=PT_FILT||(rt!=PT_BRAY&&rt!=PT_BIZR&&rt!=PT_BIZRG)) &&(rt!=PT_FILT||(t!=PT_BRAY&&t!=PT_PHOT&&t!=PT_BIZR&&t!=PT_BIZRG))) { surround_hconduct[j] = r>>8; #ifdef REALHEAT c_heat += parts[r>>8].temp*96.645/ptypes[rt].hconduct*fabs(ptypes[rt].weight); c_Cm += 96.645/ptypes[rt].hconduct*fabs(ptypes[rt].weight); #else c_heat += parts[r>>8].temp; #endif h_count++; } } #ifdef REALHEAT if (t == PT_PHOT) pt = (c_heat+parts[i].temp*96.645)/(c_Cm+96.645); else pt = (c_heat+parts[i].temp*96.645/ptypes[t].hconduct*fabs(ptypes[t].weight))/(c_Cm+96.645/ptypes[t].hconduct*fabs(ptypes[t].weight)); #else pt = parts[i].temp = (c_heat+parts[i].temp)/(h_count+1); #endif for (j=0; j<8; j++) { parts[surround_hconduct[j]].temp = pt; } ctemph = ctempl = pt; // change boiling point with pressure if ((ptypes[t].state==ST_LIQUID && ptransitions[t].tht>-1 && ptransitions[t].tht-1 && ptransitions[t].tltptransitions[t].thv&&ptransitions[t].tht>-1) { // particle type change due to high temperature if (ptransitions[t].tht!=PT_NUM) t = ptransitions[t].tht; else if (t==PT_ICEI) { if (parts[i].ctype&&parts[i].ctype!=PT_ICEI) { if (ptransitions[parts[i].ctype].tlt==PT_ICEI&&pt<=ptransitions[parts[i].ctype].tlv) s = 0; else { t = parts[i].ctype; parts[i].ctype = PT_NONE; parts[i].life = 0; } } else if (pt>274.0f) t = PT_WATR; else s = 0; } else if (t==PT_SLTW) { if (1>rand()%6) t = PT_SALT; else t = PT_WTRV; } else s = 0; } else if (ctempl-1) { // particle type change due to low temperature if (ptransitions[t].tlt!=PT_NUM) t = ptransitions[t].tlt; else if (t==PT_WTRV) { if (pt<273.0f) t = PT_RIME; else t = PT_DSTW; } else if (t==PT_LAVA) { if (parts[i].ctype>0 && parts[i].ctype=ptransitions[PT_BMTL].thv) s = 0; else if (ptransitions[parts[i].ctype].tht==PT_LAVA) { if (pt>=ptransitions[parts[i].ctype].thv) s = 0; } else if (pt>=973.0f) s = 0; // freezing point for lava with any other (not listed in ptransitions as turning into lava) ctype if (s) { t = parts[i].ctype; parts[i].ctype = PT_NONE; if (t==PT_THRM) { parts[i].tmp = 0; t = PT_BMTL; } if (t==PT_PLUT) { parts[i].tmp = 0; t = PT_LAVA; } } } else if (pt<973.0f) t = PT_STNE; else s = 0; } else s = 0; } else s = 0; if (s) { // particle type change occurred if (t==PT_ICEI||t==PT_LAVA) parts[i].ctype = parts[i].type; if (!(t==PT_ICEI&&parts[i].ctype==PT_FRZW)) parts[i].life = 0; if (ptypes[t].state==ST_GAS&&ptypes[parts[i].type].state!=ST_GAS) pv[y/CELL][x/CELL] += 0.50f; part_change_type(i,x,y,t); if (t==PT_FIRE||t==PT_PLSM||t==PT_HFLM) parts[i].life = rand()%50+120; if (t==PT_LAVA) { if (parts[i].ctype==PT_BRMT) parts[i].ctype = PT_BMTL; else if (parts[i].ctype==PT_SAND) parts[i].ctype = PT_GLAS; else if (parts[i].ctype==PT_BGLA) parts[i].ctype = PT_GLAS; else if (parts[i].ctype==PT_PQRT) parts[i].ctype = PT_QRTZ; parts[i].life = rand()%120+240; } if (t==PT_NONE) { kill_part(i); goto killed; } } pt = parts[i].temp = restrict_flt(parts[i].temp, MIN_TEMP, MAX_TEMP); if (t==PT_LAVA) { parts[i].life = restrict_flt((parts[i].temp-700)/7, 0.0f, 400.0f); if (parts[i].ctype==PT_THRM&&parts[i].tmp>0) { parts[i].tmp--; parts[i].temp = 3500; } if (parts[i].ctype==PT_PLUT&&parts[i].tmp>0) { parts[i].tmp--; parts[i].temp = MAX_TEMP; } } } } if (t==PT_LIFE) { parts[i].temp = restrict_flt(parts[i].temp-50.0f, MIN_TEMP, MAX_TEMP); ISGOL=1;//means there is a life particle on screen } if (t==PT_WIRE) { wire_placed = 1; } //spark updates from walls if ((ptypes[t].properties&PROP_CONDUCTS) || t==PT_SPRK) { nx = x % CELL; if (nx == 0) nx = x/CELL - 1; else if (nx == CELL-1) nx = x/CELL + 1; else nx = x/CELL; ny = y % CELL; if (ny == 0) ny = y/CELL - 1; else if (ny == CELL-1) ny = y/CELL + 1; else ny = y/CELL; if (nx>=0 && ny>=0 && nx2.5f) { parts[i].life = rand()%80+180; parts[i].temp = restrict_flt(ptypes[PT_FIRE].heat + (ptypes[t].flammable/2), MIN_TEMP, MAX_TEMP); t = PT_FIRE; part_change_type(i,x,y,t); pv[y/CELL][x/CELL] += 0.25f * CFDS; } s = 1; gravtot = fabsf(gravy[y/CELL][x/CELL])+fabsf(gravx[y/CELL][x/CELL]); if (pv[y/CELL][x/CELL]>ptransitions[t].phv&&ptransitions[t].pht>-1) { // particle type change due to high pressure if (ptransitions[t].pht!=PT_NUM) t = ptransitions[t].pht; else if (t==PT_BMTL) { if (pv[y/CELL][x/CELL]>2.5f) t = PT_BRMT; else if (pv[y/CELL][x/CELL]>1.0f && parts[i].tmp==1) t = PT_BRMT; else s = 0; } else s = 0; } else if (pv[y/CELL][x/CELL]-1) { // particle type change due to low pressure if (ptransitions[t].plt!=PT_NUM) t = ptransitions[t].plt; else s = 0; } else if (gravtot>(ptransitions[t].phv/4.0f)&&ptransitions[t].pht>-1) { // particle type change due to high gravity if (ptransitions[t].pht!=PT_NUM) t = ptransitions[t].pht; else if (t==PT_BMTL) { if (gravtot>0.625f) t = PT_BRMT; else if (gravtot>0.25f && parts[i].tmp==1) t = PT_BRMT; else s = 0; } else s = 0; } else s = 0; if (s) { // particle type change occurred parts[i].life = 0; part_change_type(i,x,y,t); if (t==PT_FIRE) parts[i].life = rand()%50+120; if (t==PT_NONE) { kill_part(i); goto killed; } } //call the particle update function, if there is one if (ptypes[t].update_func) { if ((*(ptypes[t].update_func))(i,x,y,surround_space,nt)) continue; } if (legacy_enable)//if heat sim is off update_legacy_all(i,x,y,surround_space,nt); killed: if (parts[i].type == PT_NONE)//if its dead, skip to next particle continue; if (!parts[i].vx&&!parts[i].vy)//if its not moving, skip to next particle, movement code it next continue; #if defined(WIN32) && !defined(__GNUC__) mv = max(fabsf(parts[i].vx), fabsf(parts[i].vy)); #else mv = fmaxf(fabsf(parts[i].vx), fabsf(parts[i].vy)); #endif if (mv < ISTP) { clear_x = x; clear_y = y; clear_xf = parts[i].x; clear_yf = parts[i].y; fin_xf = clear_xf + parts[i].vx; fin_yf = clear_yf + parts[i].vy; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); } else { // interpolate to see if there is anything in the way dx = parts[i].vx*ISTP/mv; dy = parts[i].vy*ISTP/mv; fin_xf = parts[i].x; fin_yf = parts[i].y; while (1) { mv -= ISTP; fin_xf += dx; fin_yf += dy; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); if (mv <= 0.0f) { // nothing found fin_xf = parts[i].x + parts[i].vx; fin_yf = parts[i].y + parts[i].vy; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); clear_xf = fin_xf-dx; clear_yf = fin_yf-dy; clear_x = (int)(clear_xf+0.5f); clear_y = (int)(clear_yf+0.5f); break; } if (fin_x=XRES-CELL || fin_y>=YRES-CELL || pmap[fin_y][fin_x] || (bmap[fin_y/CELL][fin_x/CELL] && (bmap[fin_y/CELL][fin_x/CELL]==WL_DESTROYALL || bmap[fin_y/CELL][fin_x/CELL]==WL_DETECT || !eval_move(t,fin_x,fin_y,NULL)))) { // found an obstacle clear_xf = fin_xf-dx; clear_yf = fin_yf-dy; clear_x = (int)(clear_xf+0.5f); clear_y = (int)(clear_yf+0.5f); break; } } } stagnant = parts[i].flags & FLAG_STAGNANT; parts[i].flags &= ~FLAG_STAGNANT; if ((t==PT_PHOT||t==PT_NEUT)) { if (t == PT_PHOT) { rt = pmap[fin_y][fin_x] & 0xFF; lt = pmap[y][x] & 0xFF; r = eval_move(PT_PHOT, fin_x, fin_y, NULL); if (((rt==PT_GLAS && lt!=PT_GLAS) || (rt!=PT_GLAS && lt==PT_GLAS)) && r) { if (!get_normal_interp(REFRACT|t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry)) { kill_part(i); continue; } r = get_wavelength_bin(&parts[i].ctype); if (r == -1) { kill_part(i); continue; } nn = GLASS_IOR - GLASS_DISP*(r-15)/15.0f; nn *= nn; nrx = -nrx; nry = -nry; if (rt==PT_GLAS && lt!=PT_GLAS) nn = 1.0f/nn; ct1 = parts[i].vx*nrx + parts[i].vy*nry; ct2 = 1.0f - (nn*nn)*(1.0f-(ct1*ct1)); if (ct2 < 0.0f) { // total internal reflection parts[i].vx -= 2.0f*ct1*nrx; parts[i].vy -= 2.0f*ct1*nry; fin_xf = parts[i].x; fin_yf = parts[i].y; fin_x = x; fin_y = y; } else { // refraction ct2 = sqrtf(ct2); ct2 = ct2 - nn*ct1; parts[i].vx = nn*parts[i].vx + ct2*nrx; parts[i].vy = nn*parts[i].vy + ct2*nry; } } } if (stagnant)//FLAG_STAGNANT set, was reflected on previous frame { // cast coords as int then back to float for compatibility with existing saves if (!do_move(i, x, y, (float)fin_x, (float)fin_y)) { kill_part(i); continue; } } else if (!do_move(i, x, y, fin_xf, fin_yf)) { // reflection parts[i].flags |= FLAG_STAGNANT; if (t==PT_NEUT && 100>(rand()%1000)) { kill_part(i); continue; } r = pmap[fin_y][fin_x]; // this should be replaced with a particle type attribute ("photwl" or something) if ((r & 0xFF) == PT_PSCN) parts[i].ctype = 0x00000000; if ((r & 0xFF) == PT_NSCN) parts[i].ctype = 0x00000000; if ((r & 0xFF) == PT_SPRK) parts[i].ctype = 0x00000000; if ((r & 0xFF) == PT_COAL) parts[i].ctype = 0x00000000; if ((r & 0xFF) == PT_BCOL) parts[i].ctype = 0x00000000; if ((r & 0xFF) == PT_PLEX) parts[i].ctype &= 0x1F00003E; if ((r & 0xFF) == PT_NITR) parts[i].ctype &= 0x0007C000; if ((r & 0xFF) == PT_NBLE) parts[i].ctype &= 0x3FFF8000; if ((r & 0xFF) == PT_LAVA) parts[i].ctype &= 0x3FF00000; if ((r & 0xFF) == PT_ACID) parts[i].ctype &= 0x1FE001FE; if ((r & 0xFF) == PT_DUST) parts[i].ctype &= 0x3FFFFFC0; if ((r & 0xFF) == PT_SNOW) parts[i].ctype &= 0x03FFFFFF; if ((r & 0xFF) == PT_GOO) parts[i].ctype &= 0x3FFAAA00; if ((r & 0xFF) == PT_PLNT) parts[i].ctype &= 0x0007C000; if ((r & 0xFF) == PT_PLUT) parts[i].ctype &= 0x001FCE00; if ((r & 0xFF) == PT_URAN) parts[i].ctype &= 0x003FC000; if (get_normal_interp(t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry)) { dp = nrx*parts[i].vx + nry*parts[i].vy; parts[i].vx -= 2.0f*dp*nrx; parts[i].vy -= 2.0f*dp*nry; // leave the actual movement until next frame so that reflection of fast particles and refraction happen correctly } else { if (t!=PT_NEUT) kill_part(i); continue; } if (!parts[i].ctype&&t!=PT_NEUT) { kill_part(i); continue; } } } else if (ptypes[t].falldown==0) { // gasses and solids (but not powders) if (!do_move(i, x, y, fin_xf, fin_yf)) { // can't move there, so bounce off // TODO if (fin_x>x+ISTP) fin_x=x+ISTP; if (fin_xy+ISTP) fin_y=y+ISTP; if (fin_y0.01f || fabsf(parts[i].vy)>0.01f)) { // allow diagonal movement if target position is blocked // but no point trying this if particle is stuck in a block of identical particles dx = parts[i].vx - parts[i].vy*r; dy = parts[i].vy + parts[i].vx*r; if (fabsf(dy)>fabsf(dx)) mv = fabsf(dy); else mv = fabsf(dx); dx /= mv; dy /= mv; if (do_move(i, x, y, clear_xf+dx, clear_yf+dy)) { parts[i].vx *= ptypes[t].collision; parts[i].vy *= ptypes[t].collision; goto movedone; } swappage = dx; dx = dy*r; dy = -swappage*r; if (do_move(i, x, y, clear_xf+dx, clear_yf+dy)) { parts[i].vx *= ptypes[t].collision; parts[i].vy *= ptypes[t].collision; goto movedone; } } if (ptypes[t].falldown>1 && !ngrav_enable && gravityMode==0 && parts[i].vy>fabsf(parts[i].vx)) { s = 0; // stagnant is true if FLAG_STAGNANT was set for this particle in previous frame if (!stagnant || nt) //nt is if there is an something else besides the current particle type, around the particle rt = 30;//slight less water lag, although it changes how it moves a lot else rt = 10; for (j=clear_x+r; j>=0 && j>=clear_x-rt && j0) r = 1; else r = -1; if (s==1) for (j=ny+r; j>=0 && j=ny-rt && j1 && fabsf(pGravX*parts[i].vx+pGravY*parts[i].vy)>fabsf(pGravY*parts[i].vx-pGravX*parts[i].vy)) { float nxf, nyf, prev_pGravX, prev_pGravY, ptGrav = ptypes[t].gravity; s = 0; // stagnant is true if FLAG_STAGNANT was set for this particle in previous frame if (!stagnant || nt) //nt is if there is an something else besides the current particle type, around the particle rt = 30;//slight less water lag, although it changes how it moves a lot else rt = 10; nxf = clear_xf; nyf = clear_yf; for (j=0;jfabsf(pGravX)) mv = fabsf(pGravY); else mv = fabsf(pGravX); if (mv<0.0001f) break; pGravX /= mv; pGravY /= mv; if (j) { nxf += r*(pGravY*2.0f-prev_pGravY); nyf += -r*(pGravX*2.0f-prev_pGravX); } else { nxf += r*pGravY; nyf += -r*pGravX; } prev_pGravX = pGravX; prev_pGravY = pGravY; nx = (int)(nxf+0.5f); ny = (int)(nyf+0.5f); if (nx<0 || ny<0 || nx>=XRES || ny >=YRES) break; if ((pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]) { s = do_move(i, x, y, nxf, nyf); if (s) { nx = (int)(parts[i].x+0.5f); ny = (int)(parts[i].y+0.5f); break; } if (bmap[ny/CELL][nx/CELL]!=WL_STREAM) break; } } if (s==1) { clear_x = nx; clear_y = ny; for (j=0;jfabsf(pGravX)) mv = fabsf(pGravY); else mv = fabsf(pGravX); if (mv<0.0001f) break; pGravX /= mv; pGravY /= mv; nxf += pGravX; nyf += pGravY; nx = (int)(nxf+0.5f); ny = (int)(nyf+0.5f); if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) break; if ((pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]) { s = do_move(i, clear_x, clear_y, nxf, nyf); if (s || bmap[ny/CELL][nx/CELL]!=WL_STREAM) break; } } } else if (s==-1) {} // particle is out of bounds else if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {} else parts[i].flags |= FLAG_STAGNANT; parts[i].vx *= ptypes[t].collision; parts[i].vy *= ptypes[t].collision; } else { // if interpolation was done, try moving to last clear position if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {} else parts[i].flags |= FLAG_STAGNANT; parts[i].vx *= ptypes[t].collision; parts[i].vy *= ptypes[t].collision; } } } } movedone: continue; } } int parts_lastActiveIndex = NPART-1; void update_particles(pixel *vid)//doesn't update the particles themselves, but some other things { int i, j, x, y, t, nx, ny, r, cr,cg,cb, l = -1; float lx, ly; int lastPartUsed = 0; int lastPartUnused = -1; #ifdef MT int pt = 0, pc = 0; pthread_t *InterThreads; #endif memset(pmap, 0, sizeof(pmap)); memset(photons, 0, sizeof(photons)); NUM_PARTS = 0; for (i=0; i<=parts_lastActiveIndex; i++)//the particle loop that resets the pmap/photon maps every frame, to update them. { if (parts[i].type) { t = parts[i].type; x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); if (x>=0 && y>=0 && x=NPART-1) pfree = -1; else pfree = parts_lastActiveIndex+1; } else { if (parts_lastActiveIndex>=NPART-1) parts[lastPartUnused].life = -1; else parts[lastPartUnused].life = parts_lastActiveIndex+1; } parts_lastActiveIndex = lastPartUsed; for (y=0; y=XRES || ny<0 || ny>=YRES) break; addpixel(vid, nx, ny, 255, 255, 255, 64); i = nx/CELL; j = ny/CELL; lx += vx[j][i]*0.125f; ly += vy[j][i]*0.125f; if (bmap[j][i]==WL_STREAM && i!=x && j!=y) break; } drawtext(vid, x*CELL, y*CELL-2, "\x8D", 255, 255, 255, 128); } } void clear_area(int area_x, int area_y, int area_w, int area_h) { int cx = 0; int cy = 0; for (cy=0; cyx2) { i = x2; x2 = x1; x1 = i; } if (y1>y2) { j = y2; y2 = y1; y1 = j; } for (j=y1; j<=y2; j++) for (i=x1; i<=x2; i++) create_parts(i, j, 0, 0, c); } int flood_parts(int x, int y, int fullc, int cm, int bm) { int c = fullc&0xFF; int x1, x2, dy = (c=CELL) { if ((pmap[y][x1-1]&0xFF)!=cm || bmap[y/CELL][(x1-1)/CELL]!=bm) { break; } x1--; } while (x2=CELL+dy && x1==x2 && ((pmap[y-1][x1-1]&0xFF)==PT_INST||(pmap[y-1][x1-1]&0xFF)==PT_SPRK) && ((pmap[y-1][x1]&0xFF)==PT_INST||(pmap[y-1][x1]&0xFF)==PT_SPRK) && ((pmap[y-1][x1+1]&0xFF)==PT_INST || (pmap[y-1][x1+1]&0xFF)==PT_SPRK) && (pmap[y-2][x1-1]&0xFF)!=PT_INST && ((pmap[y-2][x1]&0xFF)==PT_INST ||(pmap[y-2][x1]&0xFF)==PT_SPRK) && (pmap[y-2][x1+1]&0xFF)!=PT_INST) flood_parts(x1, y-2, fullc, cm, bm); else if (y>=CELL+dy) for (x=x1; x<=x2; x++) if ((pmap[y-1][x]&0xFF)!=PT_SPRK) { if (x==x1 || x==x2 || y>=YRES-CELL-1 || (pmap[y-1][x-1]&0xFF)==PT_INST || (pmap[y-1][x+1]&0xFF)==PT_INST || (pmap[y+1][x-1]&0xFF)==PT_INST || ((pmap[y+1][x]&0xFF)!=PT_INST&&(pmap[y+1][x]&0xFF)!=PT_SPRK) || (pmap[y+1][x+1]&0xFF)==PT_INST) flood_parts(x, y-dy, fullc, cm, bm); } if (y=CELL+dy) for (x=x1; x<=x2; x++) if ((pmap[y-dy][x]&0xFF)==cm && bmap[(y-dy)/CELL][x/CELL]==bm) if (!flood_parts(x, y-dy, fullc, cm, bm)) return 0; if (y=0&&ox=0&&oy=0 && i+u=0 && j+v=XRES || y+j>=YRES) continue; if (!REPLACE_MODE) create_part(-2, x+i, y+j, c); else if ((pmap[y+j][x+i]&0xFF)==SLALT&&SLALT!=0) create_part(-2, x+i, y+j, c); } return 1; } //eraser if (c == 0 && !REPLACE_MODE) { stemp = SLALT; SLALT = 0;//temporarily clear specific deletion element if (rx==0&&ry==0) { delete_part(x, y); } else for (j=-ry; j<=ry; j++) for (i=-rx; i<=rx; i++) if (InCurrentBrush(i ,j ,rx ,ry)) delete_part(x+i, y+j); SLALT = stemp; return 1; } if (REPLACE_MODE) { if (rx==0&&ry==0) { if ((pmap[y][x]&0xFF)==SLALT || SLALT==0) { if ((pmap[y][x])) { delete_part(x, y); if (c!=0) create_part(-2, x, y, c); } } } else for (j=-ry; j<=ry; j++) for (i=-rx; i<=rx; i++) if (InCurrentBrush(i ,j ,rx ,ry)) { if ( x+i<0 || y+j<0 || x+i>=XRES || y+j>=YRES) continue; if ((pmap[y+j][x+i]&0xFF)!=SLALT&&SLALT!=0) continue; if ((pmap[y+j][x+i])) { delete_part(x+i, y+j); if (c!=0) create_part(-2, x+i, y+j, c); } } return 1; } //else, no special modes, draw element like normal. if (rx==0&&ry==0)//workaround for 1pixel brush/floodfill crashing. todo: find a better fix later. { if (create_part(-2, x, y, c)==-1) f = 1; } else for (j=-ry; j<=ry; j++) for (i=-rx; i<=rx; i++) if (InCurrentBrush(i ,j ,rx ,ry)) if (create_part(-2, x+i, y+j, c)==-1) f = 1; return !f; } int InCurrentBrush(int i, int j, int rx, int ry) { switch(CURRENT_BRUSH) { case CIRCLE_BRUSH: return (pow(i,2)*pow(ry,2)+pow(j,2)*pow(rx,2)<=pow(rx,2)*pow(ry,2)); break; case SQUARE_BRUSH: return (i*j<=ry*rx); break; case TRI_BRUSH: return (j <= ry ) && ( j >= (((-2.0*ry)/rx)*i) -ry) && ( j >= (((-2.0*ry)/(-rx))*i)-ry ) ; break; default: return 0; break; } } void create_line(int x1, int y1, int x2, int y2, int rx, int ry, int c) { int cp=abs(y2-y1)>abs(x2-x1), x, y, dx, dy, sy; float e, de; if (cp) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); e = 0.0f; if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if (c==WL_EHOLE || c==WL_ALLOWGAS || c==WL_ALLOWALLELEC || c==WL_ALLOWSOLID || c==WL_ALLOWAIR || c==WL_WALL || c==WL_DESTROYALL || c==WL_ALLOWLIQUID || c==WL_FAN || c==WL_STREAM || c==WL_DETECT || c==WL_EWALL || c==WL_WALLELEC || !(rx+ry)) { if (cp) create_parts(y, x, rx, ry, c); else create_parts(x, y, rx, ry, c); } e -= 1.0f; } } } void *transform_save(void *odata, int *size, matrix2d transform, vector2d translate) { void *ndata; unsigned char (*bmapo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(unsigned char)); unsigned char (*bmapn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(unsigned char)); particle *partst = calloc(sizeof(particle), NPART); sign *signst = calloc(MAXSIGNS, sizeof(sign)); unsigned (*pmapt)[XRES] = calloc(YRES*XRES, sizeof(unsigned)); float (*fvxo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float)); float (*fvyo)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float)); float (*fvxn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float)); float (*fvyn)[XRES/CELL] = calloc((YRES/CELL)*(XRES/CELL), sizeof(float)); int i, x, y, nx, ny, w, h, nw, nh; vector2d pos, tmp, ctl, cbr; vector2d cornerso[4]; unsigned char *odatac = odata; if (parse_save(odata, *size, 0, 0, 0, bmapo, fvxo, fvyo, signst, partst, pmapt)) { free(bmapo); free(bmapn); free(partst); free(signst); free(pmapt); free(fvxo); free(fvyo); free(fvxn); free(fvyn); return odata; } w = odatac[6]*CELL; h = odatac[7]*CELL; // undo any translation caused by rotation cornerso[0] = v2d_new(0,0); cornerso[1] = v2d_new(w-1,0); cornerso[2] = v2d_new(0,h-1); cornerso[3] = v2d_new(w-1,h-1); for (i=0; i<4; i++) { tmp = m2d_multiply_v2d(transform,cornerso[i]); if (i==0) ctl = cbr = tmp; // top left, bottom right corner if (tmp.xcbr.x) cbr.x = tmp.x; if (tmp.y>cbr.y) cbr.y = tmp.y; } // casting as int doesn't quite do what we want with negative numbers, so use floor() tmp = v2d_new(floor(ctl.x+0.5f),floor(ctl.y+0.5f)); translate = v2d_sub(translate,tmp); nw = floor(cbr.x+0.5f)-floor(ctl.x+0.5f)+1; nh = floor(cbr.y+0.5f)-floor(ctl.y+0.5f)+1; if (nw>XRES) nw = XRES; if (nh>YRES) nh = YRES; // rotate and translate signs, parts, walls for (i=0; i=nw || ny<0 || ny>=nh) { signst[i].text[0] = 0; continue; } signst[i].x = nx; signst[i].y = ny; } for (i=0; i=nw || ny<0 || ny>=nh) { partst[i].type = PT_NONE; continue; } partst[i].x = nx; partst[i].y = ny; } for (y=0; y=nw || ny<0 || ny>=nh) continue; if (bmapo[y][x]) { bmapn[ny][nx] = bmapo[y][x]; if (bmapo[y][x]==WL_FAN) { fvxn[ny][nx] = fvxo[y][x]; fvyn[ny][nx] = fvyo[y][x]; } } } ndata = build_save(size,0,0,nw,nh,bmapn,fvxn,fvyn,signst,partst); free(bmapo); free(bmapn); free(partst); free(signst); free(pmapt); free(fvxo); free(fvyo); free(fvxn); free(fvyn); return ndata; } #if defined(WIN32) && !defined(__GNUC__) _inline void orbitalparts_get(int block1, int block2, int resblock1[], int resblock2[]) #else inline void orbitalparts_get(int block1, int block2, int resblock1[], int resblock2[]) #endif { resblock1[0] = (block1&0x000000FF); resblock1[1] = (block1&0x0000FF00)>>8; resblock1[2] = (block1&0x00FF0000)>>16; resblock1[3] = (block1&0xFF000000)>>24; resblock2[0] = (block2&0x000000FF); resblock2[1] = (block2&0x0000FF00)>>8; resblock2[2] = (block2&0x00FF0000)>>16; resblock2[3] = (block2&0xFF000000)>>24; } #if defined(WIN32) && !defined(__GNUC__) _inline void orbitalparts_set(int *block1, int *block2, int resblock1[], int resblock2[]) #else inline void orbitalparts_set(int *block1, int *block2, int resblock1[], int resblock2[]) #endif { int block1tmp = 0; int block2tmp = 0; block1tmp = (resblock1[0]&0xFF); block1tmp |= (resblock1[1]&0xFF)<<8; block1tmp |= (resblock1[2]&0xFF)<<16; block1tmp |= (resblock1[3]&0xFF)<<24; block2tmp = (resblock2[0]&0xFF); block2tmp |= (resblock2[1]&0xFF)<<8; block2tmp |= (resblock2[2]&0xFF)<<16; block2tmp |= (resblock2[3]&0xFF)<<24; *block1 = block1tmp; *block2 = block2tmp; } void grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout) { if(x < 0 || x >= XRES/CELL || y < 0 || y >= YRES/CELL) return; if(x == 0 || y ==0 || y == (YRES/CELL)-1 || x == (XRES/CELL)-1) *shapeout = 1; checkmap[y][x] = 1; shape[y][x] = 1; if(x-1 >= 0 && !checkmap[y][x-1] && bmap[y][x-1]!=WL_GRAV) grav_mask_r(x-1, y, checkmap, shape, shapeout); if(y-1 >= 0 && !checkmap[y-1][x] && bmap[y-1][x]!=WL_GRAV) grav_mask_r(x, y-1, checkmap, shape, shapeout); if(x+1 < XRES/CELL && !checkmap[y][x+1] && bmap[y][x+1]!=WL_GRAV) grav_mask_r(x+1, y, checkmap, shape, shapeout); if(y+1 < YRES/CELL && !checkmap[y+1][x] && bmap[y+1][x]!=WL_GRAV) grav_mask_r(x, y+1, checkmap, shape, shapeout); return; } struct mask_el { char *shape; char shapeout; void *next; }; typedef struct mask_el mask_el; void mask_free(mask_el *c_mask_el){ if(c_mask_el==NULL) return; if(c_mask_el->next!=NULL) mask_free(c_mask_el->next); free(c_mask_el->shape); free(c_mask_el); } void gravity_mask() { char checkmap[YRES/CELL][XRES/CELL]; int x = 0, y = 0; mask_el *t_mask_el = NULL; mask_el *c_mask_el = NULL; memset(checkmap, 0, sizeof(checkmap)); for(x = 0; x < XRES/CELL; x++) { for(y = 0; y < YRES/CELL; y++) { if(bmap[y][x]!=WL_GRAV && checkmap[y][x] == 0) { //Create a new shape if(t_mask_el==NULL){ t_mask_el = malloc(sizeof(mask_el)); t_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL)); memset(t_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL)); t_mask_el->shapeout = 0; t_mask_el->next = NULL; c_mask_el = t_mask_el; } else { c_mask_el->next = malloc(sizeof(mask_el)); c_mask_el = c_mask_el->next; c_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL)); memset(c_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL)); c_mask_el->shapeout = 0; c_mask_el->next = NULL; } //Fill the shape grav_mask_r(x, y, checkmap, c_mask_el->shape, &c_mask_el->shapeout); } } } c_mask_el = t_mask_el; memset(gravmask, 0, sizeof(gravmask)); while(c_mask_el!=NULL) { char *cshape = c_mask_el->shape; for(x = 0; x < XRES/CELL; x++) { for(y = 0; y < YRES/CELL; y++) { if(cshape[y*(XRES/CELL)+x]){ if(c_mask_el->shapeout) gravmask[y][x] = 0xFFFFFFFF; else gravmask[y][x] = 0x00000000; } } } c_mask_el = c_mask_el->next; } mask_free(t_mask_el); }