#include "simulation/Elements.h" //#TPT-Directive ElementClass Element_SING PT_SING 131 Element_SING::Element_SING() { Identifier = "DEFAULT_PT_SING"; Name = "SING"; Colour = PIXPACK(0x242424); MenuVisible = 1; MenuSection = SC_NUCLEAR; Enabled = 1; Advection = 0.7f; AirDrag = 0.36f * CFDS; AirLoss = 0.96f; Loss = 0.80f; Collision = 0.1f; Gravity = 0.12f; Diffusion = 0.00f; HotAir = -0.001f * CFDS; Falldown = 1; Flammable = 0; Explosive = 0; Meltable = 0; Hardness = 0; Weight = 86; Temperature = R_TEMP+0.0f +273.15f; HeatConduct = 70; Description = "Singularity. Creates huge amounts of negative pressure and destroys everything."; State = ST_SOLID; Properties = TYPE_PART|PROP_LIFE_DEC; LowPressure = IPL; LowPressureTransition = NT; HighPressure = IPH; HighPressureTransition = NT; LowTemperature = ITL; LowTemperatureTransition = NT; HighTemperature = ITH; HighTemperatureTransition = NT; Update = &Element_SING::update; } //#TPT-Directive ElementHeader Element_SING static int update(UPDATE_FUNC_ARGS) int Element_SING::update(UPDATE_FUNC_ARGS) { int r, rx, ry, cry, crx, nb, spawncount; int singularity = -parts[i].life; float angle, v; if (sim->pv[y/CELL][x/CELL]<singularity) sim->pv[y/CELL][x/CELL] += 0.1f*(singularity-sim->pv[y/CELL][x/CELL]); if (y+CELL<YRES && sim->pv[y/CELL+1][x/CELL]<singularity) sim->pv[y/CELL+1][x/CELL] += 0.1f*(singularity-sim->pv[y/CELL+1][x/CELL]); if (x+CELL<XRES) { sim->pv[y/CELL][x/CELL+1] += 0.1f*(singularity-sim->pv[y/CELL][x/CELL+1]); if (y+CELL<YRES) sim->pv[y/CELL+1][x/CELL+1] += 0.1f*(singularity-sim->pv[y/CELL+1][x/CELL+1]); } if (y-CELL>=0 && sim->pv[y/CELL-1][x/CELL]<singularity) sim->pv[y/CELL-1][x/CELL] += 0.1f*(singularity-sim->pv[y/CELL-1][x/CELL]); if (x-CELL>=0) { sim->pv[y/CELL][x/CELL-1] += 0.1f*(singularity-sim->pv[y/CELL][x/CELL-1]); if (y-CELL>=0) sim->pv[y/CELL-1][x/CELL-1] += 0.1f*(singularity-sim->pv[y/CELL-1][x/CELL-1]); } if (parts[i].life<1) { //Pop! for (rx=-1; rx<2; rx++) { crx = (x/CELL)+rx; for (ry=-1; ry<2; ry++) { cry = (y/CELL)+ry; if (cry >= 0 && crx >= 0 && crx < (XRES/CELL) && cry < (YRES/CELL)) { sim->pv[cry][crx] += (float)parts[i].tmp; } } } spawncount = std::abs(parts[i].tmp); spawncount = (spawncount>255) ? 3019 : std::pow((int)(spawncount/8), 2)*M_PI; for (int j = 0;j < spawncount; j++) { switch(rand()%3) { case 0: nb = sim->create_part(-3, x, y, PT_PHOT); break; case 1: nb = sim->create_part(-3, x, y, PT_NEUT); break; case 2: nb = sim->create_part(-3, x, y, PT_ELEC); break; } if (nb!=-1) { parts[nb].life = (rand()%300); parts[nb].temp = MAX_TEMP/2; angle = rand()*2.0f*M_PI/RAND_MAX; v = (float)(rand())*5.0f/RAND_MAX; parts[nb].vx = v*cosf(angle); parts[nb].vy = v*sinf(angle); } else if (sim->pfree==-1) break;//if we've run out of particles, stop trying to create them - saves a lot of lag on "sing bomb" saves } sim->kill_part(i); return 1; } for (rx=-1; rx<2; rx++) for (ry=-1; ry<2; ry++) if (BOUNDS_CHECK && (rx || ry)) { r = pmap[y+ry][x+rx]; if (!r) continue; if ((r&0xFF)!=PT_DMND&& !(rand()%3)) { if ((r&0xFF)==PT_SING && parts[r>>8].life >10) { if (parts[i].life+parts[r>>8].life > 255) continue; parts[i].life += parts[r>>8].life; } else { if (parts[i].life+3 > 255) { if (parts[r>>8].type!=PT_SING && !(rand()%100)) { int np; np = sim->create_part(r>>8,x+rx,y+ry,PT_SING); parts[np].life = rand()%50+60; } continue; } parts[i].life += 3; parts[i].tmp++; } parts[i].temp = restrict_flt(parts[r>>8].temp+parts[i].temp, MIN_TEMP, MAX_TEMP); sim->kill_part(r>>8); } } return 0; } Element_SING::~Element_SING() {}