#include #include #ifdef _MSC_VER #include #else #include #endif #include "Air.h" #include "Config.h" #include "CoordStack.h" #include "Elements.h" #include "elements/Element.h" #include "Gravity.h" #include "Sample.h" #include "Simulation.h" #include "Snapshot.h" #include "Misc.h" #include "ToolClasses.h" #include "client/GameSave.h" #include "common/tpt-minmax.h" #include "gui/game/Brush.h" #ifdef LUACONSOLE #include "lua/LuaScriptInterface.h" #include "lua/LuaScriptHelper.h" #endif int Simulation::Load(GameSave * save, bool includePressure) { return Load(0, 0, save, includePressure); } int Simulation::Load(int fullX, int fullY, GameSave * save, bool includePressure) { int blockX, blockY, x, y, r; if (!save) return 1; try { save->Expand(); } catch (ParseException) { return 1; } //Align to blockMap blockX = (fullX + CELL/2)/CELL; blockY = (fullY + CELL/2)/CELL; fullX = blockX*CELL; fullY = blockY*CELL; int partMap[PT_NUM]; for(int i = 0; i < PT_NUM; i++) { partMap[i] = i; } if(save->palette.size()) { for(std::vector::iterator iter = save->palette.begin(), end = save->palette.end(); iter != end; ++iter) { GameSave::PaletteItem pi = *iter; if (pi.second > 0 && pi.second < PT_NUM) { int myId = 0; for (int i = 0; i < PT_NUM; i++) { if (elements[i].Enabled && elements[i].Identifier == pi.first) myId = i; } // if this is a custom element, set the ID to the ID we found when comparing identifiers in the palette map // set type to 0 if we couldn't find an element with that identifier present when loading, // unless this is a default element, in which case keep the current ID, because otherwise when an element is renamed it wouldn't show up anymore in older saves if (myId != 0 || pi.first.find("DEFAULT_PT_") != 0) partMap[pi.second] = myId; } } } int i; // Map of soap particles loaded into this save, old ID -> new ID std::map soapList; for (int n = 0; n < NPART && n < save->particlesCount; n++) { Particle tempPart = save->particles[n]; tempPart.x += (float)fullX; tempPart.y += (float)fullY; x = int(tempPart.x + 0.5f); y = int(tempPart.y + 0.5f); if (tempPart.type >= 0 && tempPart.type < PT_NUM) tempPart.type = partMap[tempPart.type]; else continue; if ((player.spwn == 1 && tempPart.type==PT_STKM) || (player2.spwn == 1 && tempPart.type==PT_STKM2)) continue; if ((tempPart.type == PT_SPAWN && elementCount[PT_SPAWN]) || (tempPart.type == PT_SPAWN2 && elementCount[PT_SPAWN2])) continue; if (!elements[tempPart.type].Enabled) continue; if (tempPart.ctype > 0 && tempPart.ctype < PT_NUM) if (tempPart.type == PT_CLNE || tempPart.type == PT_PCLN || tempPart.type == PT_BCLN || tempPart.type == PT_PBCN || tempPart.type == PT_STOR || tempPart.type == PT_CONV || tempPart.type == PT_STKM || tempPart.type == PT_STKM2 || tempPart.type == PT_FIGH || tempPart.type == PT_LAVA || tempPart.type == PT_SPRK || tempPart.type == PT_PSTN || tempPart.type == PT_CRAY || tempPart.type == PT_DTEC || tempPart.type == PT_DRAY) { tempPart.ctype = partMap[tempPart.ctype]; } if (tempPart.type == PT_PIPE || tempPart.type == PT_PPIP || tempPart.type == PT_STOR) { tempPart.tmp = partMap[tempPart.tmp&0xFF] | (tempPart.tmp&~0xFF); } if (tempPart.type == PT_VIRS || tempPart.type == PT_VRSG || tempPart.type == PT_VRSS) { if (tempPart.tmp2 > 0 && tempPart.tmp2 < PT_NUM) tempPart.tmp2 = partMap[tempPart.tmp2]; } //Replace existing if ((r = pmap[y][x])) { elementCount[parts[r>>8].type]--; parts[r>>8] = tempPart; i = r>>8; pmap[y][x] = 0; elementCount[tempPart.type]++; } else if ((r = photons[y][x])) { elementCount[parts[r>>8].type]--; parts[r>>8] = tempPart; i = r>>8; photons[y][x] = 0; elementCount[tempPart.type]++; } //Allocate new particle else { if (pfree == -1) break; i = pfree; pfree = parts[i].life; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; parts[i] = tempPart; elementCount[tempPart.type]++; } if (parts[i].type == PT_STKM) { Element_STKM::STKM_init_legs(this, &player, i); player.spwn = 1; player.elem = PT_DUST; player.rocketBoots = false; } else if (parts[i].type == PT_STKM2) { Element_STKM::STKM_init_legs(this, &player2, i); player2.spwn = 1; player2.elem = PT_DUST; player2.rocketBoots = false; } else if (parts[i].type == PT_SPAWN) { player.spawnID = i; } else if (parts[i].type == PT_SPAWN2) { player2.spawnID = i; } else if (parts[i].type == PT_FIGH) { for (int fcount = 0; fcount < MAX_FIGHTERS; fcount++) { if(!fighters[fcount].spwn) { fighcount++; //currentPart.tmp = fcount; parts[i].tmp = fcount; Element_STKM::STKM_init_legs(this, &(fighters[fcount]), i); fighters[fcount].spwn = 1; fighters[fcount].elem = PT_DUST; break; } } } else if (parts[i].type == PT_SOAP) { soapList.insert(std::pair(n, i)); } } parts_lastActiveIndex = NPART-1; force_stacking_check = true; Element_PPIP::ppip_changed = 1; // fix SOAP links using soapList, a map of old particle ID -> new particle ID // loop through every old particle (loaded from save), and convert .tmp / .tmp2 for (std::map::iterator iter = soapList.begin(), end = soapList.end(); iter != end; ++iter) { int i = (*iter).second; if ((parts[i].ctype & 0x2) == 2) { std::map::iterator n = soapList.find(parts[i].tmp); if (n != end) parts[i].tmp = n->second; else { parts[i].tmp = 0; parts[i].ctype ^= 2; } } if ((parts[i].ctype & 0x4) == 4) { std::map::iterator n = soapList.find(parts[i].tmp2); if (n != end) parts[i].tmp2 = n->second; else { parts[i].tmp2 = 0; parts[i].ctype ^= 4; } } } for (size_t i = 0; i < save->signs.size() && signs.size() < MAXSIGNS; i++) { if (save->signs[i].text[0]) { sign tempSign = save->signs[i]; tempSign.x += fullX; tempSign.y += fullY; signs.push_back(tempSign); } } for(int saveBlockX = 0; saveBlockX < save->blockWidth; saveBlockX++) { for(int saveBlockY = 0; saveBlockY < save->blockHeight; saveBlockY++) { if(save->blockMap[saveBlockY][saveBlockX]) { bmap[saveBlockY+blockY][saveBlockX+blockX] = save->blockMap[saveBlockY][saveBlockX]; fvx[saveBlockY+blockY][saveBlockX+blockX] = save->fanVelX[saveBlockY][saveBlockX]; fvy[saveBlockY+blockY][saveBlockX+blockX] = save->fanVelY[saveBlockY][saveBlockX]; } if (includePressure) { pv[saveBlockY+blockY][saveBlockX+blockX] = save->pressure[saveBlockY][saveBlockX]; vx[saveBlockY+blockY][saveBlockX+blockX] = save->velocityX[saveBlockY][saveBlockX]; vy[saveBlockY+blockY][saveBlockX+blockX] = save->velocityY[saveBlockY][saveBlockX]; if (save->hasAmbientHeat) hv[saveBlockY+blockY][saveBlockX+blockX] = save->ambientHeat[saveBlockY][saveBlockX]; } } } gravWallChanged = true; air->RecalculateBlockAirMaps(); return 0; } GameSave * Simulation::Save(bool includePressure) { return Save(0, 0, XRES-1, YRES-1, includePressure); } GameSave * Simulation::Save(int fullX, int fullY, int fullX2, int fullY2, bool includePressure) { int blockX, blockY, blockX2, blockY2, blockW, blockH; //Normalise incoming coords int swapTemp; if(fullY>fullY2) { swapTemp = fullY; fullY = fullY2; fullY2 = swapTemp; } if(fullX>fullX2) { swapTemp = fullX; fullX = fullX2; fullX2 = swapTemp; } //Align coords to blockMap blockX = fullX/CELL; blockY = fullY/CELL; blockX2 = (fullX2+CELL)/CELL; blockY2 = (fullY2+CELL)/CELL; blockW = blockX2-blockX; blockH = blockY2-blockY; GameSave * newSave = new GameSave(blockW, blockH); int storedParts = 0; int elementCount[PT_NUM]; std::fill(elementCount, elementCount+PT_NUM, 0); // Map of soap particles loaded into this save, new ID -> old ID std::map soapList; for (int i = 0; i < NPART; i++) { int x, y; x = int(parts[i].x + 0.5f); y = int(parts[i].y + 0.5f); if (parts[i].type && x >= fullX && y >= fullY && x <= fullX2 && y <= fullY2) { Particle tempPart = parts[i]; tempPart.x -= blockX*CELL; tempPart.y -= blockY*CELL; if (elements[tempPart.type].Enabled) { if (tempPart.type == PT_SOAP) soapList.insert(std::pair(i, storedParts)); *newSave << tempPart; storedParts++; elementCount[tempPart.type]++; } } } if (storedParts) { for (int i = 0; i < PT_NUM; i++) { if (elements[i].Enabled && elementCount[i]) { newSave->palette.push_back(GameSave::PaletteItem(elements[i].Identifier, i)); } } // fix SOAP links using soapList, a map of new particle ID -> old particle ID // loop through every old particle (loaded from save), and convert .tmp / .tmp2 for (std::map::iterator iter = soapList.begin(), end = soapList.end(); iter != end; ++iter) { int i = (*iter).second; if ((newSave->particles[i].ctype & 0x2) == 2) { std::map::iterator n = soapList.find(newSave->particles[i].tmp); if (n != end) newSave->particles[i].tmp = n->second; else { newSave->particles[i].tmp = 0; newSave->particles[i].ctype ^= 2; } } if ((newSave->particles[i].ctype & 0x4) == 4) { std::map::iterator n = soapList.find(newSave->particles[i].tmp2); if (n != end) newSave->particles[i].tmp2 = n->second; else { newSave->particles[i].tmp2 = 0; newSave->particles[i].ctype ^= 4; } } } } for (size_t i = 0; i < MAXSIGNS && i < signs.size(); i++) { if(signs[i].text.length() && signs[i].x >= fullX && signs[i].y >= fullY && signs[i].x <= fullX2 && signs[i].y <= fullY2) { sign tempSign = signs[i]; tempSign.x -= blockX*CELL; tempSign.y -= blockY*CELL; *newSave << tempSign; } } for(int saveBlockX = 0; saveBlockX < newSave->blockWidth; saveBlockX++) { for(int saveBlockY = 0; saveBlockY < newSave->blockHeight; saveBlockY++) { if(bmap[saveBlockY+blockY][saveBlockX+blockX]) { newSave->blockMap[saveBlockY][saveBlockX] = bmap[saveBlockY+blockY][saveBlockX+blockX]; newSave->fanVelX[saveBlockY][saveBlockX] = fvx[saveBlockY+blockY][saveBlockX+blockX]; newSave->fanVelY[saveBlockY][saveBlockX] = fvy[saveBlockY+blockY][saveBlockX+blockX]; } if (includePressure) { newSave->pressure[saveBlockY][saveBlockX] = pv[saveBlockY+blockY][saveBlockX+blockX]; newSave->velocityX[saveBlockY][saveBlockX] = vx[saveBlockY+blockY][saveBlockX+blockX]; newSave->velocityY[saveBlockY][saveBlockX] = vy[saveBlockY+blockY][saveBlockX+blockX]; newSave->ambientHeat[saveBlockY][saveBlockX] = hv[saveBlockY+blockY][saveBlockX+blockX]; newSave->hasAmbientHeat = true; } } } SaveSimOptions(newSave); return newSave; } void Simulation::SaveSimOptions(GameSave * gameSave) { if (!gameSave) return; gameSave->gravityMode = gravityMode; gameSave->airMode = air->airMode; gameSave->edgeMode = edgeMode; gameSave->legacyEnable = legacy_enable; gameSave->waterEEnabled = water_equal_test; gameSave->gravityEnable = grav->ngrav_enable; gameSave->aheatEnable = aheat_enable; } Snapshot * Simulation::CreateSnapshot() { Snapshot * snap = new Snapshot(); snap->AirPressure.insert(snap->AirPressure.begin(), &pv[0][0], &pv[0][0]+((XRES/CELL)*(YRES/CELL))); snap->AirVelocityX.insert(snap->AirVelocityX.begin(), &vx[0][0], &vx[0][0]+((XRES/CELL)*(YRES/CELL))); snap->AirVelocityY.insert(snap->AirVelocityY.begin(), &vy[0][0], &vy[0][0]+((XRES/CELL)*(YRES/CELL))); snap->AmbientHeat.insert(snap->AmbientHeat.begin(), &hv[0][0], &hv[0][0]+((XRES/CELL)*(YRES/CELL))); snap->Particles.insert(snap->Particles.begin(), parts, parts+parts_lastActiveIndex+1); snap->PortalParticles.insert(snap->PortalParticles.begin(), &portalp[0][0][0], &portalp[CHANNELS-1][8-1][80-1]); snap->WirelessData.insert(snap->WirelessData.begin(), &wireless[0][0], &wireless[CHANNELS-1][2-1]); snap->GravVelocityX.insert(snap->GravVelocityX.begin(), gravx, gravx+((XRES/CELL)*(YRES/CELL))); snap->GravVelocityY.insert(snap->GravVelocityY.begin(), gravy, gravy+((XRES/CELL)*(YRES/CELL))); snap->GravValue.insert(snap->GravValue.begin(), gravp, gravp+((XRES/CELL)*(YRES/CELL))); snap->GravMap.insert(snap->GravMap.begin(), gravmap, gravmap+((XRES/CELL)*(YRES/CELL))); snap->BlockMap.insert(snap->BlockMap.begin(), &bmap[0][0], &bmap[0][0]+((XRES/CELL)*(YRES/CELL))); snap->ElecMap.insert(snap->ElecMap.begin(), &emap[0][0], &emap[0][0]+((XRES/CELL)*(YRES/CELL))); snap->FanVelocityX.insert(snap->FanVelocityX.begin(), &fvx[0][0], &fvx[0][0]+((XRES/CELL)*(YRES/CELL))); snap->FanVelocityY.insert(snap->FanVelocityY.begin(), &fvy[0][0], &fvy[0][0]+((XRES/CELL)*(YRES/CELL))); snap->stickmen.push_back(player2); snap->stickmen.push_back(player); snap->stickmen.insert(snap->stickmen.begin(), &fighters[0], &fighters[MAX_FIGHTERS]); snap->signs = signs; return snap; } void Simulation::Restore(const Snapshot & snap) { parts_lastActiveIndex = NPART-1; elementRecount = true; force_stacking_check = true; std::copy(snap.AirPressure.begin(), snap.AirPressure.end(), &pv[0][0]); std::copy(snap.AirVelocityX.begin(), snap.AirVelocityX.end(), &vx[0][0]); std::copy(snap.AirVelocityY.begin(), snap.AirVelocityY.end(), &vy[0][0]); std::copy(snap.AmbientHeat.begin(), snap.AmbientHeat.end(), &hv[0][0]); for (int i = 0; i < NPART; i++) parts[i].type = 0; std::copy(snap.Particles.begin(), snap.Particles.end(), parts); parts_lastActiveIndex = NPART-1; RecalcFreeParticles(false); std::copy(snap.PortalParticles.begin(), snap.PortalParticles.end(), &portalp[0][0][0]); std::copy(snap.WirelessData.begin(), snap.WirelessData.end(), &wireless[0][0]); if (grav->ngrav_enable) { std::copy(snap.GravVelocityX.begin(), snap.GravVelocityX.end(), gravx); std::copy(snap.GravVelocityY.begin(), snap.GravVelocityY.end(), gravy); std::copy(snap.GravValue.begin(), snap.GravValue.end(), gravp); std::copy(snap.GravMap.begin(), snap.GravMap.end(), gravmap); } std::copy(snap.BlockMap.begin(), snap.BlockMap.end(), &bmap[0][0]); std::copy(snap.ElecMap.begin(), snap.ElecMap.end(), &emap[0][0]); std::copy(snap.FanVelocityX.begin(), snap.FanVelocityX.end(), &fvx[0][0]); std::copy(snap.FanVelocityY.begin(), snap.FanVelocityY.end(), &fvy[0][0]); std::copy(snap.stickmen.begin(), snap.stickmen.end()-2, &fighters[0]); player = snap.stickmen[snap.stickmen.size()-1]; player2 = snap.stickmen[snap.stickmen.size()-2]; signs = snap.signs; } void Simulation::clear_area(int area_x, int area_y, int area_w, int area_h) { float fx = area_x-.5f, fy = area_y-.5f; for (int i = 0; i <= parts_lastActiveIndex; i++) { if (parts[i].type) if (parts[i].x >= fx && parts[i].x <= fx+area_w+1 && parts[i].y >= fy && parts[i].y <= fy+area_h+1) kill_part(i); } int cx1 = area_x/CELL, cy1 = area_y/CELL, cx2 = (area_x+area_w)/CELL, cy2 = (area_y+area_h)/CELL; for (int y = cy1; y <= cy2; y++) { for (int x = cx1; x <= cx2; x++) { if (bmap[y][x] == WL_GRAV) gravWallChanged = true; bmap[y][x] = 0; emap[y][x] = 0; } } for( int i = signs.size()-1; i >= 0; i--) { if (signs[i].text.length() && signs[i].x >= area_x && signs[i].y >= area_y && signs[i].x <= area_x+area_w && signs[i].y <= area_y+area_h) { signs.erase(signs.begin()+i); } } } bool Simulation::FloodFillPmapCheck(int x, int y, int type) { if (type == 0) return !pmap[y][x] && !photons[y][x]; if (elements[type].Properties&TYPE_ENERGY) return (photons[y][x]&0xFF) == type; else return (pmap[y][x]&0xFF) == type; } int Simulation::flood_prop(int x, int y, size_t propoffset, PropertyValue propvalue, StructProperty::PropertyType proptype) { int i, x1, x2, dy = 1; int did_something = 0; int r = pmap[y][x]; if (!r) r = photons[y][x]; if (!r) return 0; int parttype = (r&0xFF); char * bitmap = (char*)malloc(XRES*YRES); //Bitmap for checking if (!bitmap) return -1; memset(bitmap, 0, XRES*YRES); try { CoordStack cs; cs.push(x, y); do { cs.pop(x, y); x1 = x2 = x; while (x1>=CELL) { if (!FloodFillPmapCheck(x1-1, y, parttype) || bitmap[(y*XRES)+x1-1]) break; x1--; } while (x2>8])+propoffset)) = propvalue.Float; break; case StructProperty::ParticleType: case StructProperty::Integer: *((int*)(((char*)&parts[i>>8])+propoffset)) = propvalue.Integer; break; case StructProperty::UInteger: *((unsigned int*)(((char*)&parts[i>>8])+propoffset)) = propvalue.UInteger; break; default: break; } bitmap[(y*XRES)+x] = 1; did_something = 1; } if (y>=CELL+dy) for (x=x1; x<=x2; x++) if (FloodFillPmapCheck(x, y-dy, parttype) && !bitmap[((y-dy)*XRES)+x]) cs.push(x, y-dy); if (y0); } catch (std::exception& e) { std::cerr << e.what() << std::endl; free(bitmap); return -1; } free(bitmap); return did_something; } SimulationSample Simulation::GetSample(int x, int y) { SimulationSample sample; sample.PositionX = x; sample.PositionY = y; if (x >= 0 && x < XRES && y >= 0 && y < YRES) { if (photons[y][x]) { sample.particle = parts[photons[y][x]>>8]; sample.ParticleID = photons[y][x]>>8; } else if (pmap[y][x]) { sample.particle = parts[pmap[y][x]>>8]; sample.ParticleID = pmap[y][x]>>8; } if (bmap[y/CELL][x/CELL]) { sample.WallType = bmap[y/CELL][x/CELL]; } sample.AirPressure = pv[y/CELL][x/CELL]; sample.AirTemperature = hv[y/CELL][x/CELL]; sample.AirVelocityX = vx[y/CELL][x/CELL]; sample.AirVelocityY = vy[y/CELL][x/CELL]; if(grav->ngrav_enable) { sample.Gravity = gravp[(y/CELL)*(XRES/CELL)+(x/CELL)]; sample.GravityVelocityX = gravx[(y/CELL)*(XRES/CELL)+(x/CELL)]; sample.GravityVelocityY = gravy[(y/CELL)*(XRES/CELL)+(x/CELL)]; } } else sample.isMouseInSim = false; sample.NumParts = NUM_PARTS; return sample; } #define PMAP_CMP_CONDUCTIVE(pmap, t) (((pmap)&0xFF)==(t) || (((pmap)&0xFF)==PT_SPRK && parts[(pmap)>>8].ctype==(t))) int Simulation::FloodINST(int x, int y, int fullc, int cm) { int c = fullc&0xFF; int x1, x2; int coord_stack_limit = XRES*YRES; unsigned short (*coord_stack)[2]; int coord_stack_size = 0; int created_something = 0; if (c>=PT_NUM) return 0; if (cm==-1) { if (c==0) { cm = pmap[y][x]&0xFF; if (!cm) return 0; } else cm = 0; } if ((pmap[y][x]&0xFF)!=cm || parts[pmap[y][x]>>8].life!=0) return 1; coord_stack = (short unsigned int (*)[2])malloc(sizeof(unsigned short)*2*coord_stack_limit); coord_stack[coord_stack_size][0] = x; coord_stack[coord_stack_size][1] = y; coord_stack_size++; do { coord_stack_size--; x = coord_stack[coord_stack_size][0]; y = coord_stack[coord_stack_size][1]; x1 = x2 = x; // go left as far as possible while (x1>=CELL) { if ((pmap[y][x1-1]&0xFF)!=cm || parts[pmap[y][x1-1]>>8].life!=0) { break; } x1--; } // go right as far as possible while (x2>8].life!=0) { break; } x2++; } // fill span for (x=x1; x<=x2; x++) { if (create_part(-1, x, y, c, fullc>>8)>=0) created_something = 1; } // add vertically adjacent pixels to stack // (wire crossing for INST) if (y>=CELL+1 && x1==x2 && PMAP_CMP_CONDUCTIVE(pmap[y-1][x1-1], cm) && PMAP_CMP_CONDUCTIVE(pmap[y-1][x1], cm) && PMAP_CMP_CONDUCTIVE(pmap[y-1][x1+1], cm) && !PMAP_CMP_CONDUCTIVE(pmap[y-2][x1-1], cm) && PMAP_CMP_CONDUCTIVE(pmap[y-2][x1], cm) && !PMAP_CMP_CONDUCTIVE(pmap[y-2][x1+1], cm)) { // travelling vertically up, skipping a horizontal line if ((pmap[y-2][x1]&0xFF)==cm && !parts[pmap[y-2][x1]>>8].life) { coord_stack[coord_stack_size][0] = x1; coord_stack[coord_stack_size][1] = y-2; coord_stack_size++; if (coord_stack_size>=coord_stack_limit) { free(coord_stack); return -1; } } } else if (y>=CELL+1) { for (x=x1; x<=x2; x++) { if ((pmap[y-1][x]&0xFF)==cm && !parts[pmap[y-1][x]>>8].life) { if (x==x1 || x==x2 || y>=YRES-CELL-1 || !PMAP_CMP_CONDUCTIVE(pmap[y+1][x], cm) || PMAP_CMP_CONDUCTIVE(pmap[y+1][x+1], cm) || PMAP_CMP_CONDUCTIVE(pmap[y+1][x-1], cm)) { // if at the end of a horizontal section, or if it's a T junction or not a 1px wire crossing coord_stack[coord_stack_size][0] = x; coord_stack[coord_stack_size][1] = y-1; coord_stack_size++; if (coord_stack_size>=coord_stack_limit) { free(coord_stack); return -1; } } } } } if (y>8].life) { coord_stack[coord_stack_size][0] = x1; coord_stack[coord_stack_size][1] = y+2; coord_stack_size++; if (coord_stack_size>=coord_stack_limit) { free(coord_stack); return -1; } } } else if (y>8].life) { if (x==x1 || x==x2 || y<0 || !PMAP_CMP_CONDUCTIVE(pmap[y-1][x], cm) || PMAP_CMP_CONDUCTIVE(pmap[y-1][x+1], cm) || PMAP_CMP_CONDUCTIVE(pmap[y-1][x-1], cm)) { // if at the end of a horizontal section, or if it's a T junction or not a 1px wire crossing coord_stack[coord_stack_size][0] = x; coord_stack[coord_stack_size][1] = y+1; coord_stack_size++; if (coord_stack_size>=coord_stack_limit) { free(coord_stack); return -1; } } } } } } while (coord_stack_size>0); free(coord_stack); return created_something; } int Simulation::flood_water(int x, int y, int i, int originaly, int check) { int x1 = 0,x2 = 0; // go left as far as possible x1 = x2 = x; if (!pmap[y][x]) return 1; while (x1>=CELL) { if ((elements[(pmap[y][x1-1]&0xFF)].Falldown)!=2) { break; } x1--; } while (x2>8].flags &= ~FLAG_WATEREQUAL;//flag it as checked (different from the original particle's checked flag) else parts[pmap[y][x]>>8].flags |= FLAG_WATEREQUAL; //check above, maybe around other sides too? if ( ((y-1) > originaly) && !pmap[y-1][x] && eval_move(parts[i].type, x, y-1, NULL)) { int oldx = (int)(parts[i].x + 0.5f); int oldy = (int)(parts[i].y + 0.5f); pmap[y-1][x] = pmap[oldy][oldx]; pmap[oldy][oldx] = 0; parts[i].x = x; parts[i].y = y-1; return 0; } } // fill children if (y>=CELL+1) for (x=x1; x<=x2; x++) if ((elements[(pmap[y-1][x]&0xFF)].Falldown)==2 && (parts[pmap[y-1][x]>>8].flags & FLAG_WATEREQUAL) == check) if (!flood_water(x, y-1, i, originaly, check)) return 0; if (y>8].flags & FLAG_WATEREQUAL) == check) if (!flood_water(x, y+1, i, originaly, check)) return 0; return 1; } void Simulation::SetEdgeMode(int newEdgeMode) { edgeMode = newEdgeMode; switch(edgeMode) { case 0: case 2: for(int i = 0; i<(XRES/CELL); i++) { bmap[0][i] = 0; bmap[YRES/CELL-1][i] = 0; } for(int i = 1; i<((YRES/CELL)-1); i++) { bmap[i][0] = 0; bmap[i][XRES/CELL-1] = 0; } break; case 1: int i; for(i=0; i<(XRES/CELL); i++) { bmap[0][i] = WL_WALL; bmap[YRES/CELL-1][i] = WL_WALL; } for(i=1; i<((YRES/CELL)-1); i++) { bmap[i][0] = WL_WALL; bmap[i][XRES/CELL-1] = WL_WALL; } break; default: SetEdgeMode(0); } } void Simulation::ApplyDecoration(int x, int y, int colR_, int colG_, int colB_, int colA_, int mode) { int rp; float tr, tg, tb, ta, colR = colR_, colG = colG_, colB = colB_, colA = colA_; float strength = 0.01f; rp = pmap[y][x]; if (!rp) rp = photons[y][x]; if (!rp) return; ta = (parts[rp>>8].dcolour>>24)&0xFF; tr = (parts[rp>>8].dcolour>>16)&0xFF; tg = (parts[rp>>8].dcolour>>8)&0xFF; tb = (parts[rp>>8].dcolour)&0xFF; ta /= 255.0f; tr /= 255.0f; tg /= 255.0f; tb /= 255.0f; colR /= 255.0f; colG /= 255.0f; colB /= 255.0f; colA /= 255.0f; if (mode == DECO_DRAW) { ta = colA; tr = colR; tg = colG; tb = colB; } else if (mode == DECO_CLEAR) { ta = tr = tg = tb = 0.0f; } else if (mode == DECO_ADD) { //ta += (colA*strength)*colA; tr += (colR*strength)*colA; tg += (colG*strength)*colA; tb += (colB*strength)*colA; } else if (mode == DECO_SUBTRACT) { //ta -= (colA*strength)*colA; tr -= (colR*strength)*colA; tg -= (colG*strength)*colA; tb -= (colB*strength)*colA; } else if (mode == DECO_MULTIPLY) { tr *= 1.0f+(colR*strength)*colA; tg *= 1.0f+(colG*strength)*colA; tb *= 1.0f+(colB*strength)*colA; } else if (mode == DECO_DIVIDE) { tr /= 1.0f+(colR*strength)*colA; tg /= 1.0f+(colG*strength)*colA; tb /= 1.0f+(colB*strength)*colA; } else if (mode == DECO_SMUDGE) { if (x >= CELL && x < XRES-CELL && y >= CELL && y < YRES-CELL) { float tas = 0.0f, trs = 0.0f, tgs = 0.0f, tbs = 0.0f; int rx, ry; float num = 0; for (rx=-2; rx<3; rx++) for (ry=-2; ry<3; ry++) { if (abs(rx)+abs(ry) > 2 && (pmap[y+ry][x+rx]&0xFF) && parts[pmap[y+ry][x+rx]>>8].dcolour) { Particle part = parts[pmap[y+ry][x+rx]>>8]; num += 1.0f; tas += ((float)((part.dcolour>>24)&0xFF)); trs += ((float)((part.dcolour>>16)&0xFF)); tgs += ((float)((part.dcolour>>8)&0xFF)); tbs += ((float)((part.dcolour)&0xFF)); } } if (num == 0) return; ta = (tas/num)/255.0f; tr = (trs/num)/255.0f; tg = (tgs/num)/255.0f; tb = (tbs/num)/255.0f; if (!parts[rp>>8].dcolour) ta -= 3/255.0f; } } ta *= 255.0f; tr *= 255.0f; tg *= 255.0f; tb *= 255.0f; ta += .5f; tr += .5f; tg += .5f; tb += .5f; colA_ = ta; colR_ = tr; colG_ = tg; colB_ = tb; if(colA_ > 255) colA_ = 255; else if(colA_ < 0) colA_ = 0; if(colR_ > 255) colR_ = 255; else if(colR_ < 0) colR_ = 0; if(colG_ > 255) colG_ = 255; else if(colG_ < 0) colG_ = 0; if(colB_ > 255) colB_ = 255; else if(colB_ < 0) colB_ = 0; parts[rp>>8].dcolour = ((colA_<<24)|(colR_<<16)|(colG_<<8)|colB_); } void Simulation::ApplyDecorationPoint(int positionX, int positionY, int colR, int colG, int colB, int colA, int mode, Brush * cBrush) { if(cBrush) { int radiusX = cBrush->GetRadius().X, radiusY = cBrush->GetRadius().Y, sizeX = cBrush->GetSize().X, sizeY = cBrush->GetSize().Y; unsigned char *bitmap = cBrush->GetBitmap(); for(int y = 0; y < sizeY; y++) { for(int x = 0; x < sizeX; x++) { if(bitmap[(y*sizeX)+x] && (positionX+(x-radiusX) >= 0 && positionY+(y-radiusY) >= 0 && positionX+(x-radiusX) < XRES && positionY+(y-radiusY) < YRES)) { ApplyDecoration(positionX+(x-radiusX), positionY+(y-radiusY), colR, colG, colB, colA, mode); } } } } } void Simulation::ApplyDecorationLine(int x1, int y1, int x2, int y2, int colR, int colG, int colB, int colA, int mode, Brush * cBrush) { bool reverseXY = abs(y2-y1) > abs(x2-x1); int x, y, dx, dy, sy, rx, ry; float e = 0.0f, de; if(cBrush) { rx = cBrush->GetRadius().X; ry = cBrush->GetRadius().Y; } if (reverseXY) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if (!(rx+ry)) { if (reverseXY) ApplyDecorationPoint(y, x, colR, colG, colB, colA, mode, cBrush); else ApplyDecorationPoint(x, y, colR, colG, colB, colA, mode, cBrush); } e -= 1.0f; } } } void Simulation::ApplyDecorationBox(int x1, int y1, int x2, int y2, int colR, int colG, int colB, int colA, int mode) { int i, j; if (x1>x2) { i = x2; x2 = x1; x1 = i; } if (y1>y2) { j = y2; y2 = y1; y1 = j; } for (j=y1; j<=y2; j++) for (i=x1; i<=x2; i++) ApplyDecoration(i, j, colR, colG, colB, colA, mode); } bool Simulation::ColorCompare(Renderer *ren, int x, int y, int replaceR, int replaceG, int replaceB) { pixel pix = ren->vid[x+y*WINDOWW]; int r = PIXR(pix); int g = PIXG(pix); int b = PIXB(pix); int diff = std::abs(replaceR-r) + std::abs(replaceG-g) + std::abs(replaceB-b); return diff < 15; } void Simulation::ApplyDecorationFill(Renderer *ren, int x, int y, int colR, int colG, int colB, int colA, int replaceR, int replaceG, int replaceB) { int x1, x2; char *bitmap = (char*)malloc(XRES*YRES); //Bitmap for checking if (!bitmap) return; memset(bitmap, 0, XRES*YRES); if (!ColorCompare(ren, x, y, replaceR, replaceG, replaceB)) { free(bitmap); return; } try { CoordStack cs; cs.push(x, y); do { cs.pop(x, y); x1 = x2 = x; // go left as far as possible while (x1>0) { if (bitmap[(x1-1)+y*XRES] || !ColorCompare(ren, x1-1, y, replaceR, replaceG, replaceB)) { break; } x1--; } // go right as far as possible while (x2= 1) for (x=x1; x<=x2; x++) if (!bitmap[x+(y-1)*XRES] && ColorCompare(ren, x, y-1, replaceR, replaceG, replaceB)) cs.push(x, y-1); if (y < YRES-1) for (x=x1; x<=x2; x++) if (!bitmap[x+(y+1)*XRES] && ColorCompare(ren, x, y+1, replaceR, replaceG, replaceB)) cs.push(x, y+1); } while (cs.getSize() > 0); } catch (std::exception& e) { std::cerr << e.what() << std::endl; free(bitmap); return; } free(bitmap); } int Simulation::Tool(int x, int y, int tool, float strength) { if(tools[tool]) { Particle * cpart = NULL; int r; if ((r = pmap[y][x])) cpart = &(parts[r>>8]); else if ((r = photons[y][x])) cpart = &(parts[r>>8]); return tools[tool]->Perform(this, cpart, x, y, strength); } return 0; } int Simulation::ToolBrush(int positionX, int positionY, int tool, Brush * cBrush, float strength) { if(cBrush) { int radiusX = cBrush->GetRadius().X, radiusY = cBrush->GetRadius().Y, sizeX = cBrush->GetSize().X, sizeY = cBrush->GetSize().Y; unsigned char *bitmap = cBrush->GetBitmap(); for(int y = 0; y < sizeY; y++) for(int x = 0; x < sizeX; x++) if(bitmap[(y*sizeX)+x] && (positionX+(x-radiusX) >= 0 && positionY+(y-radiusY) >= 0 && positionX+(x-radiusX) < XRES && positionY+(y-radiusY) < YRES)) Tool(positionX+(x-radiusX), positionY+(y-radiusY), tool, strength); } return 0; } void Simulation::ToolLine(int x1, int y1, int x2, int y2, int tool, Brush * cBrush, float strength) { bool reverseXY = abs(y2-y1) > abs(x2-x1); int x, y, dx, dy, sy, rx = cBrush->GetRadius().X, ry = cBrush->GetRadius().Y; float e = 0.0f, de; if (reverseXY) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if (!(rx+ry) && ((y1=y2))) { if (reverseXY) ToolBrush(y, x, tool, cBrush, strength); else ToolBrush(x, y, tool, cBrush, strength); } e -= 1.0f; } } } void Simulation::ToolBox(int x1, int y1, int x2, int y2, int tool, float strength) { int i, j; if (x1>x2) { i = x2; x2 = x1; x1 = i; } if (y1>y2) { j = y2; y2 = y1; y1 = j; } for (j=y1; j<=y2; j++) for (i=x1; i<=x2; i++) Tool(i, j, tool, strength); } int Simulation::CreateWalls(int x, int y, int rx, int ry, int wall, Brush * cBrush) { if(cBrush) { rx = cBrush->GetRadius().X; ry = cBrush->GetRadius().Y; } ry = ry/CELL; rx = rx/CELL; x = x/CELL; y = y/CELL; x -= rx; y -= ry; for (int wallX = x; wallX <= x+rx+rx; wallX++) { for (int wallY = y; wallY <= y+ry+ry; wallY++) { if (wallX >= 0 && wallX < XRES/CELL && wallY >= 0 && wallY < YRES/CELL) { if (wall == WL_FAN) { fvx[wallY][wallX] = 0.0f; fvy[wallY][wallX] = 0.0f; } else if (wall == WL_STREAM) { wallX = x + rx; wallY = y + ry; //streamlines can't be drawn next to each other for (int tempY = wallY-1; tempY < wallY+2; tempY++) for (int tempX = wallX-1; tempX < wallX+2; tempX++) { if (tempX >= 0 && tempX < XRES/CELL && tempY >= 0 && tempY < YRES/CELL && bmap[tempY][tempX] == WL_STREAM) return 1; } } if (wall == WL_GRAV || bmap[wallY][wallX] == WL_GRAV) gravWallChanged = true; if (wall == WL_ERASEALL) { for (int i = 0; i < CELL; i++) for (int j = 0; j < CELL; j++) { delete_part(wallX*CELL+i, wallY*CELL+j); } for (int i = signs.size()-1; i >= 0; i--) if (signs[i].x >= wallX*CELL && signs[i].y >= wallY*CELL && signs[i].x <= (wallX+1)*CELL && signs[i].y <= (wallY+1)*CELL) signs.erase(signs.begin()+i); bmap[wallY][wallX] = 0; } else bmap[wallY][wallX] = wall; } } } return 1; } void Simulation::CreateWallLine(int x1, int y1, int x2, int y2, int rx, int ry, int wall, Brush * cBrush) { int x, y, dx, dy, sy; bool reverseXY = abs(y2-y1) > abs(x2-x1); float e = 0.0f, de; if (reverseXY) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if ((y1=y2)) { if (reverseXY) CreateWalls(y, x, rx, ry, wall, cBrush); else CreateWalls(x, y, rx, ry, wall, cBrush); } e -= 1.0f; } } } void Simulation::CreateWallBox(int x1, int y1, int x2, int y2, int wall) { int i, j; if (x1>x2) { i = x2; x2 = x1; x1 = i; } if (y1>y2) { j = y2; y2 = y1; y1 = j; } for (j=y1; j<=y2; j++) for (i=x1; i<=x2; i++) CreateWalls(i, j, 0, 0, wall, NULL); } int Simulation::FloodWalls(int x, int y, int wall, int bm) { int x1, x2, dy = CELL; if (bm==-1) { if (wall==WL_ERASE || wall==WL_ERASEALL) { bm = bmap[y/CELL][x/CELL]; if (!bm) return 0; } else bm = 0; } if (bmap[y/CELL][x/CELL]!=bm) return 1; // go left as far as possible x1 = x2 = x; while (x1>=CELL) { if (bmap[y/CELL][(x1-1)/CELL]!=bm) { break; } x1--; } while (x2=CELL) for (x=x1; x<=x2; x++) if (bmap[(y-dy)/CELL][x/CELL]==bm) if (!FloodWalls(x, y-dy, wall, bm)) return 0; if (yGetRadius().X, radiusY = cBrush->GetRadius().Y, sizeX = cBrush->GetSize().X, sizeY = cBrush->GetSize().Y; unsigned char *bitmap = cBrush->GetBitmap(); // special case for LIGH if (c == PT_LIGH) { if (currentTick < lightningRecreate) return 1; int newlife = radiusX + radiusY; if (newlife > 55) newlife = 55; c = c|newlife<<8; lightningRecreate = currentTick+newlife/4; return CreatePartFlags(positionX, positionY, c, flags); } else if (c == PT_TESC) { int newtmp = (radiusX*4+radiusY*4+7); if (newtmp > 300) newtmp = 300; c = c|newtmp<<8; } for (int y = sizeY-1; y >=0; y--) { for (int x = 0; x < sizeX; x++) { if (bitmap[(y*sizeX)+x] && (positionX+(x-radiusX) >= 0 && positionY+(y-radiusY) >= 0 && positionX+(x-radiusX) < XRES && positionY+(y-radiusY) < YRES)) { CreatePartFlags(positionX+(x-radiusX), positionY+(y-radiusY), c, flags); } } } } return 0; } int Simulation::CreateParts(int x, int y, int rx, int ry, int c, int flags) { bool created = false; if (flags == -1) flags = replaceModeFlags; // special case for LIGH if (c == PT_LIGH) { if (currentTick < lightningRecreate) return 1; int newlife = rx + ry; if (newlife > 55) newlife = 55; c = c|newlife<<8; lightningRecreate = currentTick+newlife/4; rx = ry = 0; } else if (c == PT_TESC) { int newtmp = (rx*4+ry*4+7); if (newtmp > 300) newtmp = 300; c = c|newtmp<<8; } for (int j = -ry; j <= ry; j++) for (int i = -rx; i <= rx; i++) if (CreatePartFlags(x+i, y+j, c, flags)) created = true; return !created; } int Simulation::CreatePartFlags(int x, int y, int c, int flags) { //delete if (c == 0 && !(flags&REPLACE_MODE)) delete_part(x, y); //specific delete else if ((flags&SPECIFIC_DELETE) && !(flags&REPLACE_MODE)) { if (!replaceModeSelected || (pmap[y][x]&0xFF) == replaceModeSelected || (photons[y][x]&0xFF) == replaceModeSelected) delete_part(x, y); } //replace mode else if (flags&REPLACE_MODE) { if (x<0 || y<0 || x>=XRES || y>=YRES) return 0; if (replaceModeSelected && (pmap[y][x]&0xFF) != replaceModeSelected && (photons[y][x]&0xFF) != replaceModeSelected) return 0; if ((pmap[y][x])) { delete_part(x, y); if (c!=0) create_part(-2, x, y, c&0xFF, c>>8); } } //normal draw else if (create_part(-2, x, y, c&0xFF, c>>8) == -1) return 1; return 0; } void Simulation::CreateLine(int x1, int y1, int x2, int y2, int c, Brush * cBrush, int flags) { int x, y, dx, dy, sy, rx = cBrush->GetRadius().X, ry = cBrush->GetRadius().Y; bool reverseXY = abs(y2-y1) > abs(x2-x1); float e = 0.0f, de; if (reverseXY) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if (!(rx+ry) && ((y1=y2))) { if (reverseXY) CreateParts(y, x, c, cBrush, flags); else CreateParts(x, y, c, cBrush, flags); } e -= 1.0f; } } } //Now simply creates a 0 pixel radius line without all the complicated flags / other checks void Simulation::CreateLine(int x1, int y1, int x2, int y2, int c) { bool reverseXY = abs(y2-y1) > abs(x2-x1); int x, y, dx, dy, sy; float e, de; int v = c>>8; c = c&0xFF; if (reverseXY) { y = x1; x1 = y1; y1 = y; y = x2; x2 = y2; y2 = y; } if (x1 > x2) { y = x1; x1 = x2; x2 = y; y = y1; y1 = y2; y2 = y; } dx = x2 - x1; dy = abs(y2 - y1); e = 0.0f; if (dx) de = dy/(float)dx; else de = 0.0f; y = y1; sy = (y1= 0.5f) { y += sy; if ((y1=y2)) { if (reverseXY) create_part(-1, y, x, c, v); else create_part(-1, x, y, c, v); } e -= 1.0f; } } } void Simulation::CreateBox(int x1, int y1, int x2, int y2, int c, int flags) { int i, j; if (x1>x2) { i = x2; x2 = x1; x1 = i; } if (y1>y2) { j = y2; y2 = y1; y1 = j; } for (j=y2; j>=y1; j--) for (i=x1; i<=x2; i++) CreateParts(i, j, 0, 0, c, flags); } int Simulation::FloodParts(int x, int y, int fullc, int cm, int flags) { int c = fullc&0xFF; int x1, x2, dy = (c= XRES-CELL || y < CELL || y >= YRES-CELL || c == PT_SPRK)) return 1; else if (x < 0 || x >= XRES || y < 0 || y >= YRES) return 1; if (c == 0) { cm = pmap[y][x]&0xFF; if (!cm) { cm = photons[y][x]&0xFF; if (!cm) { if (bmap[y/CELL][x/CELL]) return FloodWalls(x, y, WL_ERASE, -1); else return -1; } } } else cm = 0; } if (c != 0 && IsWallBlocking(x, y, c)) return 1; if (!FloodFillPmapCheck(x, y, cm)) return 1; coord_stack = (short unsigned int (*)[2])malloc(sizeof(unsigned short)*2*coord_stack_limit); coord_stack[coord_stack_size][0] = x; coord_stack[coord_stack_size][1] = y; coord_stack_size++; do { coord_stack_size--; x = coord_stack[coord_stack_size][0]; y = coord_stack[coord_stack_size][1]; x1 = x2 = x; // go left as far as possible while (c?x1>CELL:x1>0) { if (!FloodFillPmapCheck(x1-1, y, cm) || (c != 0 && IsWallBlocking(x1-1, y, c))) { break; } x1--; } // go right as far as possible while (c?x2>8); created_something = 1; } } else if (pmap[y][x]) { kill_part(pmap[y][x]>>8); created_something = 1; } } else if (CreateParts(x, y, 0, 0, fullc, flags)) created_something = 1; } if (c?y>=CELL+dy:y>=dy) for (x=x1; x<=x2; x++) if (FloodFillPmapCheck(x, y-dy, cm) && (c == 0 || !IsWallBlocking(x, y-dy, c))) { coord_stack[coord_stack_size][0] = x; coord_stack[coord_stack_size][1] = y-dy; coord_stack_size++; if (coord_stack_size>=coord_stack_limit) { free(coord_stack); return -1; } } if (c?y=coord_stack_limit) { free(coord_stack); return -1; } } } while (coord_stack_size>0); free(coord_stack); return created_something; } void Simulation::orbitalparts_get(int block1, int block2, int resblock1[], int resblock2[]) { resblock1[0] = (block1&0x000000FF); resblock1[1] = (block1&0x0000FF00)>>8; resblock1[2] = (block1&0x00FF0000)>>16; resblock1[3] = (block1&0xFF000000)>>24; resblock2[0] = (block2&0x000000FF); resblock2[1] = (block2&0x0000FF00)>>8; resblock2[2] = (block2&0x00FF0000)>>16; resblock2[3] = (block2&0xFF000000)>>24; } void Simulation::orbitalparts_set(int *block1, int *block2, int resblock1[], int resblock2[]) { int block1tmp = 0; int block2tmp = 0; block1tmp = (resblock1[0]&0xFF); block1tmp |= (resblock1[1]&0xFF)<<8; block1tmp |= (resblock1[2]&0xFF)<<16; block1tmp |= (resblock1[3]&0xFF)<<24; block2tmp = (resblock2[0]&0xFF); block2tmp |= (resblock2[1]&0xFF)<<8; block2tmp |= (resblock2[2]&0xFF)<<16; block2tmp |= (resblock2[3]&0xFF)<<24; *block1 = block1tmp; *block2 = block2tmp; } inline int Simulation::is_wire(int x, int y) { return bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE; } inline int Simulation::is_wire_off(int x, int y) { return (bmap[y][x]==WL_DETECT || bmap[y][x]==WL_EWALL || bmap[y][x]==WL_ALLOWLIQUID || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_ALLOWALLELEC || bmap[y][x]==WL_EHOLE) && emap[y][x]<8; } // implement __builtin_ctz and __builtin_clz on msvc #ifdef _MSC_VER unsigned msvc_ctz(unsigned a) { unsigned long i; _BitScanForward(&i, a); return i; } unsigned msvc_clz(unsigned a) { unsigned long i; _BitScanReverse(&i, a); return 31 - i; } #define __builtin_ctz msvc_ctz #define __builtin_clz msvc_clz #endif int Simulation::get_wavelength_bin(int *wm) { int i, w0, wM, r; if (!(*wm & 0x3FFFFFFF)) return -1; #if defined(__GNUC__) || defined(_MSVC_VER) w0 = __builtin_ctz(*wm | 0xC0000000); wM = 31 - __builtin_clz(*wm & 0x3FFFFFFF); #else w0 = 30; wM = 0; for (i = 0; i < 30; i++) if (*wm & (1< wM) wM = i; } #endif if (wM - w0 < 5) return wM + w0; r = rand(); i = (r >> 1) % (wM-w0-4); i += w0; if (r & 1) { *wm &= 0x1F << i; return (i + 2) * 2; } else { *wm &= 0xF << i; return (i + 2) * 2 - 1; } } void Simulation::set_emap(int x, int y) { int x1, x2; if (!is_wire_off(x, y)) return; // go left as far as possible x1 = x2 = x; while (x1>0) { if (!is_wire_off(x1-1, y)) break; x1--; } while (x21 && x1==x2 && is_wire(x1-1, y-1) && is_wire(x1, y-1) && is_wire(x1+1, y-1) && !is_wire(x1-1, y-2) && is_wire(x1, y-2) && !is_wire(x1+1, y-2)) set_emap(x1, y-2); else if (y>0) for (x=x1; x<=x2; x++) if (is_wire_off(x, y-1)) { if (x==x1 || x==x2 || y>=YRES/CELL-1 || is_wire(x-1, y-1) || is_wire(x+1, y-1) || is_wire(x-1, y+1) || !is_wire(x, y+1) || is_wire(x+1, y+1)) set_emap(x, y-1); } if (y>8].type; else return PT_NONE; } else { int pmr2 = pmap[(int)((parts[ci].y + parts[ni].y)/2+0.5f)][(int)((parts[ci].x + parts[ni].x)/2+0.5f)];//seems to be more accurate. if (pmr2) { if (parts[pmr2>>8].type==t) return t; } else return PT_NONE; } return PT_NONE; } // unused function void Simulation::create_arc(int sx, int sy, int dx, int dy, int midpoints, int variance, int type, int flags) { int i; float xint, yint; int *xmid, *ymid; int voffset = variance/2; xmid = (int *)calloc(midpoints + 2, sizeof(int)); ymid = (int *)calloc(midpoints + 2, sizeof(int)); xint = (float)(dx-sx)/(float)(midpoints+1.0f); yint = (float)(dy-sy)/(float)(midpoints+1.0f); xmid[0] = sx; xmid[midpoints+1] = dx; ymid[0] = sy; ymid[midpoints+1] = dy; for(i = 1; i <= midpoints; i++) { ymid[i] = ymid[i-1]+yint; xmid[i] = xmid[i-1]+xint; } for(i = 0; i <= midpoints; i++) { if(i!=midpoints) { xmid[i+1] += (rand()%variance)-voffset; ymid[i+1] += (rand()%variance)-voffset; } CreateLine(xmid[i], ymid[i], xmid[i+1], ymid[i+1], type); } free(xmid); free(ymid); } void Simulation::clear_sim(void) { debug_currentParticle = 0; emp_decor = 0; emp_trigger_count = 0; signs.clear(); memset(bmap, 0, sizeof(bmap)); memset(emap, 0, sizeof(emap)); memset(parts, 0, sizeof(Particle)*NPART); for (int i = 0; i < NPART-1; i++) parts[i].life = i+1; parts[NPART-1].life = -1; pfree = 0; parts_lastActiveIndex = 0; memset(pmap, 0, sizeof(pmap)); memset(fvx, 0, sizeof(fvx)); memset(fvy, 0, sizeof(fvy)); memset(photons, 0, sizeof(photons)); memset(wireless, 0, sizeof(wireless)); memset(gol2, 0, sizeof(gol2)); memset(portalp, 0, sizeof(portalp)); memset(fighters, 0, sizeof(fighters)); std::fill(elementCount, elementCount+PT_NUM, 0); elementRecount = true; fighcount = 0; player.spwn = 0; player.spawnID = -1; player.rocketBoots = false; player2.spwn = 0; player2.spawnID = -1; player2.rocketBoots = false; //memset(pers_bg, 0, WINDOWW*YRES*PIXELSIZE); //memset(fire_r, 0, sizeof(fire_r)); //memset(fire_g, 0, sizeof(fire_g)); //memset(fire_b, 0, sizeof(fire_b)); //if(gravmask) //memset(gravmask, 0xFFFFFFFF, (XRES/CELL)*(YRES/CELL)*sizeof(unsigned)); if(grav) grav->Clear(); if(air) { air->Clear(); air->ClearAirH(); } SetEdgeMode(edgeMode); } bool Simulation::IsWallBlocking(int x, int y, int type) { if (bmap[y/CELL][x/CELL]) { int wall = bmap[y/CELL][x/CELL]; if (wall == WL_ALLOWGAS && !(elements[type].Properties&TYPE_GAS)) return true; else if (wall == WL_ALLOWENERGY && !(elements[type].Properties&TYPE_ENERGY)) return true; else if (wall == WL_ALLOWLIQUID && !(elements[type].Properties&TYPE_LIQUID)) return true; else if (wall == WL_ALLOWPOWDER && !(elements[type].Properties&TYPE_PART)) return true; else if (wall == WL_ALLOWAIR || wall == WL_WALL || wall == WL_WALLELEC) return true; else if (wall == WL_EWALL && !emap[y/CELL][x/CELL]) return true; } return false; } void Simulation::init_can_move() { int movingType, destinationType; // can_move[moving type][type at destination] // 0 = No move/Bounce // 1 = Swap // 2 = Both particles occupy the same space. // 3 = Varies, go run some extra checks //particles that don't exist shouldn't move... for (destinationType = 0; destinationType < PT_NUM; destinationType++) can_move[0][destinationType] = 0; //initialize everything else to swapping by default for (movingType = 1; movingType < PT_NUM; movingType++) for (destinationType = 0; destinationType < PT_NUM; destinationType++) can_move[movingType][destinationType] = 1; //photons go through everything by default for (destinationType = 1; destinationType < PT_NUM; destinationType++) can_move[PT_PHOT][destinationType] = 2; for (movingType = 1; movingType < PT_NUM; movingType++) { for (destinationType = 1; destinationType < PT_NUM; destinationType++) { //weight check, also prevents particles of same type displacing each other if (elements[movingType].Weight <= elements[destinationType].Weight || destinationType == PT_GEL) can_move[movingType][destinationType] = 0; //other checks for NEUT and energy particles if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTPASS)) can_move[movingType][destinationType] = 2; if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTABSORB)) can_move[movingType][destinationType] = 1; if (movingType == PT_NEUT && (elements[destinationType].Properties&PROP_NEUTPENETRATE)) can_move[movingType][destinationType] = 1; if (destinationType == PT_NEUT && (elements[movingType].Properties&PROP_NEUTPENETRATE)) can_move[movingType][destinationType] = 0; if ((elements[movingType].Properties&TYPE_ENERGY) && (elements[destinationType].Properties&TYPE_ENERGY)) can_move[movingType][destinationType] = 2; } } for (destinationType = 0; destinationType < PT_NUM; destinationType++) { //set what stickmen can move through int stkm_move = 0; if (elements[destinationType].Properties & (TYPE_LIQUID | TYPE_GAS)) stkm_move = 2; if (!destinationType || destinationType == PT_PRTO || destinationType == PT_SPAWN || destinationType == PT_SPAWN2) stkm_move = 2; can_move[PT_STKM][destinationType] = stkm_move; can_move[PT_STKM2][destinationType] = stkm_move; can_move[PT_FIGH][destinationType] = stkm_move; //spark shouldn't move can_move[PT_SPRK][destinationType] = 0; } for (movingType = 1; movingType < PT_NUM; movingType++) { //everything "swaps" with VACU and BHOL to make them eat things can_move[movingType][PT_BHOL] = 1; can_move[movingType][PT_NBHL] = 1; //nothing goes through stickmen can_move[movingType][PT_STKM] = 0; can_move[movingType][PT_STKM2] = 0; can_move[movingType][PT_FIGH] = 0; //INVS behaviour varies with pressure can_move[movingType][PT_INVIS] = 3; //stop CNCT from being displaced by other particles can_move[movingType][PT_CNCT] = 0; //VOID and PVOD behaviour varies with powered state and ctype can_move[movingType][PT_PVOD] = 3; can_move[movingType][PT_VOID] = 3; //nothing moves through EMBR (not sure why, but it's killed when it touches anything) can_move[movingType][PT_EMBR] = 0; can_move[PT_EMBR][movingType] = 0; //Energy particles move through VIBR and BVBR, so it can absorb them if (elements[movingType].Properties & TYPE_ENERGY) { can_move[movingType][PT_VIBR] = 1; can_move[movingType][PT_BVBR] = 1; } //SAWD cannot be displaced by other powders if (elements[movingType].Properties & TYPE_PART) can_move[movingType][PT_SAWD] = 0; } //a list of lots of things PHOT can move through // TODO: replace with property for (destinationType = 0; destinationType < PT_NUM; destinationType++) { if (destinationType == PT_GLAS || destinationType == PT_PHOT || destinationType == PT_FILT || destinationType == PT_INVIS || destinationType == PT_CLNE || destinationType == PT_PCLN || destinationType == PT_BCLN || destinationType == PT_PBCN || destinationType == PT_WATR || destinationType == PT_DSTW || destinationType == PT_SLTW || destinationType == PT_GLOW || destinationType == PT_ISOZ || destinationType == PT_ISZS || destinationType == PT_QRTZ || destinationType == PT_PQRT || destinationType == PT_H2 || destinationType == PT_BGLA || destinationType == PT_C5) can_move[PT_PHOT][destinationType] = 2; if (destinationType != PT_DMND && destinationType != PT_INSL && destinationType != PT_VOID && destinationType != PT_PVOD && destinationType != PT_VIBR && destinationType != PT_BVBR && destinationType != PT_PRTI && destinationType != PT_PRTO) { can_move[PT_PROT][destinationType] = 2; can_move[PT_GRVT][destinationType] = 2; } } //other special cases that weren't covered above can_move[PT_DEST][PT_DMND] = 0; can_move[PT_DEST][PT_CLNE] = 0; can_move[PT_DEST][PT_PCLN] = 0; can_move[PT_DEST][PT_BCLN] = 0; can_move[PT_DEST][PT_PBCN] = 0; can_move[PT_NEUT][PT_INVIS] = 2; can_move[PT_ELEC][PT_LCRY] = 2; can_move[PT_ELEC][PT_EXOT] = 2; can_move[PT_ELEC][PT_GLOW] = 2; can_move[PT_PHOT][PT_LCRY] = 3; //varies according to LCRY life can_move[PT_PHOT][PT_GPMP] = 3; can_move[PT_PHOT][PT_BIZR] = 2; can_move[PT_ELEC][PT_BIZR] = 2; can_move[PT_PHOT][PT_BIZRG] = 2; can_move[PT_ELEC][PT_BIZRG] = 2; can_move[PT_PHOT][PT_BIZRS] = 2; can_move[PT_ELEC][PT_BIZRS] = 2; can_move[PT_BIZR][PT_FILT] = 2; can_move[PT_BIZRG][PT_FILT] = 2; can_move[PT_ANAR][PT_WHOL] = 1; //WHOL eats ANAR can_move[PT_ANAR][PT_NWHL] = 1; can_move[PT_ELEC][PT_DEUT] = 1; can_move[PT_THDR][PT_THDR] = 2; can_move[PT_EMBR][PT_EMBR] = 2; can_move[PT_TRON][PT_SWCH] = 3; } /* RETURN-value explanation 1 = Swap 0 = No move/Bounce 2 = Both particles occupy the same space. */ int Simulation::eval_move(int pt, int nx, int ny, unsigned *rr) { unsigned r; int result; if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) return 0; r = pmap[ny][nx]; if (r) r = (r&~0xFF) | parts[r>>8].type; if (rr) *rr = r; if (pt>=PT_NUM || (r&0xFF)>=PT_NUM) return 0; result = can_move[pt][r&0xFF]; if (result == 3) { switch (r&0xFF) { case PT_LCRY: if (pt==PT_PHOT) result = (parts[r>>8].life > 5)? 2 : 0; break; case PT_GPMP: if (pt == PT_PHOT) result = (parts[r>>8].life < 10) ? 2 : 0; break; case PT_INVIS: { float pressureResistance = 0.0f; if (parts[r>>8].tmp > 0) pressureResistance = (float)parts[r>>8].tmp; else pressureResistance = 4.0f; if (pv[ny/CELL][nx/CELL] < -pressureResistance || pv[ny/CELL][nx/CELL] > pressureResistance) result = 2; else result = 0; break; } case PT_PVOD: if (parts[r>>8].life == 10) { if (!parts[r>>8].ctype || (parts[r>>8].ctype==pt)!=(parts[r>>8].tmp&1)) result = 1; else result = 0; } else result = 0; break; case PT_VOID: if (!parts[r>>8].ctype || (parts[r>>8].ctype==pt)!=(parts[r>>8].tmp&1)) result = 1; else result = 0; break; case PT_SWCH: if (pt == PT_TRON) { if (parts[r>>8].life >= 10) return 2; else return 0; } break; default: // This should never happen // If it were to happen, try_move would interpret a 3 as a 1 result = 1; } } if (bmap[ny/CELL][nx/CELL]) { if (IsWallBlocking(nx, ny, pt)) return 0; if (bmap[ny/CELL][nx/CELL]==WL_EHOLE && !emap[ny/CELL][nx/CELL] && !(elements[pt].Properties&TYPE_SOLID) && !(elements[r&0xFF].Properties&TYPE_SOLID)) return 2; } return result; } int Simulation::try_move(int i, int x, int y, int nx, int ny) { unsigned r, e; if (x==nx && y==ny) return 1; if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) return 1; e = eval_move(parts[i].type, nx, ny, &r); /* half-silvered mirror */ if (!e && parts[i].type==PT_PHOT && (((r&0xFF)==PT_BMTL && rand() 5) part_change_type(r>>8, nx, ny, PT_SAWD); } if (!(elements[parts[i].type].Properties & TYPE_ENERGY)) return 0; if (!legacy_enable && parts[i].type==PT_PHOT && r)//PHOT heat conduction { if ((r & 0xFF) == PT_COAL || (r & 0xFF) == PT_BCOL) parts[r>>8].temp = parts[i].temp; if ((r & 0xFF) < PT_NUM && elements[r&0xFF].HeatConduct && ((r&0xFF)!=PT_HSWC||parts[r>>8].life==10) && (r&0xFF)!=PT_FILT) parts[i].temp = parts[r>>8].temp = restrict_flt((parts[r>>8].temp+parts[i].temp)/2, MIN_TEMP, MAX_TEMP); } else if ((parts[i].type==PT_NEUT || parts[i].type==PT_ELEC) && ((r&0xFF)==PT_CLNE || (r&0xFF)==PT_PCLN || (r&0xFF)==PT_BCLN || (r&0xFF)==PT_PBCN)) { if (!parts[r>>8].ctype) parts[r>>8].ctype = parts[i].type; } if ((r&0xFF)==PT_PRTI && (elements[parts[i].type].Properties & TYPE_ENERGY)) { int nnx, count; for (count=0; count<8; count++) { if (isign(x-nx)==isign(portal_rx[count]) && isign(y-ny)==isign(portal_ry[count])) break; } count = count%8; parts[r>>8].tmp = (int)((parts[r>>8].temp-73.15f)/100+1); if (parts[r>>8].tmp>=CHANNELS) parts[r>>8].tmp = CHANNELS-1; else if (parts[r>>8].tmp<0) parts[r>>8].tmp = 0; for ( nnx=0; nnx<80; nnx++) if (!portalp[parts[r>>8].tmp][count][nnx].type) { portalp[parts[r>>8].tmp][count][nnx] = parts[i]; parts[i].type=PT_NONE; break; } } return 0; } if (e == 2) //if occupy same space { switch (parts[i].type) { case PT_PHOT: { switch (r&0xFF) { case PT_GLOW: if (!parts[r>>8].life && rand() < RAND_MAX/30) { parts[r>>8].life = 120; create_gain_photon(i); } break; case PT_FILT: parts[i].ctype = Element_FILT::interactWavelengths(&parts[r>>8], parts[i].ctype); break; case PT_C5: if (parts[r>>8].life > 0 && (parts[r>>8].ctype & parts[i].ctype & 0xFFFFFFC0)) { float vx = ((parts[r>>8].tmp << 16) >> 16) / 255.0f; float vy = (parts[r>>8].tmp >> 16) / 255.0f; float vn = parts[i].vx * parts[i].vx + parts[i].vy * parts[i].vy; parts[i].ctype = (parts[r>>8].ctype & parts[i].ctype) >> 6; parts[r>>8].life = 0; parts[r>>8].ctype = 0; // add momentum of photons to each other parts[i].vx += vx; parts[i].vy += vy; // normalize velocity to original value vn /= parts[i].vx * parts[i].vx + parts[i].vy * parts[i].vy; vn = sqrtf(vn); parts[i].vx *= vn; parts[i].vy *= vn; } else if(!parts[r>>8].ctype && parts[i].ctype & 0xFFFFFFC0) { parts[r>>8].life = 1; parts[r>>8].ctype = parts[i].ctype; parts[r>>8].tmp = (0xFFFF & (int)(parts[i].vx * 255.0f)) | (0xFFFF0000 & (int)(parts[i].vy * 16711680.0f)); parts[r>>8].tmp2 = (0xFFFF & (int)((parts[i].x - x) * 255.0f)) | (0xFFFF0000 & (int)((parts[i].y - y) * 16711680.0f)); kill_part(i); } break; case PT_INVIS: { float pressureResistance = 0.0f; if (parts[r>>8].tmp > 0) pressureResistance = (float)parts[r>>8].tmp; else pressureResistance = 4.0f; if (pv[ny/CELL][nx/CELL] >= -pressureResistance && pv[ny/CELL][nx/CELL] <= pressureResistance) { part_change_type(i,x,y,PT_NEUT); parts[i].ctype = 0; } break; } case PT_BIZR: case PT_BIZRG: case PT_BIZRS: part_change_type(i, x, y, PT_ELEC); parts[i].ctype = 0; break; case PT_H2: if (!(parts[i].tmp&0x1)) { part_change_type(i, x, y, PT_PROT); parts[i].ctype = 0; parts[i].tmp2 = 0x1; create_part(r>>8, x, y, PT_ELEC); return 1; } break; case PT_GPMP: if (parts[r>>8].life == 0) { part_change_type(i, x, y, PT_GRVT); parts[i].tmp = parts[r>>8].temp - 273.15f; } break; } break; } case PT_NEUT: if ((r&0xFF) == PT_GLAS || (r&0xFF) == PT_BGLA) if (rand() < RAND_MAX/10) create_cherenkov_photon(i); break; case PT_ELEC: if ((r&0xFF) == PT_GLOW) { part_change_type(i, x, y, PT_PHOT); parts[i].ctype = 0x3FFFFFFF; } break; case PT_PROT: if ((r&0xFF) == PT_INVIS) part_change_type(i, x, y, PT_NEUT); break; case PT_BIZR: case PT_BIZRG: if ((r&0xFF) == PT_FILT) parts[i].ctype = Element_FILT::interactWavelengths(&parts[r>>8], parts[i].ctype); break; } return 1; } //else e=1 , we are trying to swap the particles, return 0 no swap/move, 1 is still overlap/move, because the swap takes place later switch (r&0xFF) { case PT_VOID: case PT_PVOD: // this is where void eats particles // void ctype already checked in eval_move kill_part(i); return 0; case PT_BHOL: case PT_NBHL: // this is where blackhole eats particles if (!legacy_enable) { parts[r>>8].temp = restrict_flt(parts[r>>8].temp+parts[i].temp/2, MIN_TEMP, MAX_TEMP);//3.0f; } kill_part(i); return 0; case PT_WHOL: case PT_NWHL: // whitehole eats anar if (parts[i].type == PT_ANAR) { if (!legacy_enable) { parts[r>>8].temp = restrict_flt(parts[r>>8].temp - (MAX_TEMP-parts[i].temp)/2, MIN_TEMP, MAX_TEMP); } kill_part(i); return 0; } break; case PT_DEUT: if (parts[i].type == PT_ELEC) { if(parts[r>>8].life < 6000) parts[r>>8].life += 1; parts[r>>8].temp = 0; kill_part(i); return 0; } break; case PT_VIBR: case PT_BVBR: if ((elements[parts[i].type].Properties & TYPE_ENERGY)) { parts[r>>8].tmp += 20; kill_part(i); return 0; } break; } switch (parts[i].type) { case PT_NEUT: if (elements[r&0xFF].Properties & PROP_NEUTABSORB) { kill_part(i); return 0; } break; case PT_CNCT: if (y < ny && (pmap[y+1][x]&0xFF) == PT_CNCT) //check below CNCT for another CNCT return 0; break; case PT_GBMB: if (parts[i].life > 0) return 0; break; } if ((bmap[y/CELL][x/CELL]==WL_EHOLE && !emap[y/CELL][x/CELL]) && !(bmap[ny/CELL][nx/CELL]==WL_EHOLE && !emap[ny/CELL][nx/CELL])) return 0; int ri = r >> 8; //ri is the particle number at r (pmap[ny][nx]) if (r)//the swap part, if we make it this far, swap { if (parts[i].type==PT_NEUT) { // target material is NEUTPENETRATE, meaning it gets moved around when neutron passes unsigned s = pmap[y][x]; if (s && !(elements[s&0xFF].Properties&PROP_NEUTPENETRATE)) return 1; // if the element currently underneath neutron isn't NEUTPENETRATE, don't move anything except the neutron // if nothing is currently underneath neutron, only move target particle if(bmap[y/CELL][x/CELL] == WL_ALLOWENERGY) return 1; // do not drag target particle into an energy only wall if (s) { pmap[ny][nx] = (s&~(0xFF))|parts[s>>8].type; parts[s>>8].x = nx; parts[s>>8].y = ny; } else pmap[ny][nx] = 0; parts[ri].x = x; parts[ri].y = y; pmap[y][x] = (ri<<8)|parts[ri].type; return 1; } if ((pmap[ny][nx]>>8) == ri) pmap[ny][nx] = 0; parts[ri].x += x-nx; parts[ri].y += y-ny; pmap[(int)(parts[ri].y+0.5f)][(int)(parts[ri].x+0.5f)] = (ri<<8)|parts[ri].type; } return 1; } // try to move particle, and if successful update pmap and parts[i].x,y int Simulation::do_move(int i, int x, int y, float nxf, float nyf) { int nx = (int)(nxf+0.5f), ny = (int)(nyf+0.5f), result; if (edgeMode == 2) { bool x_ok = (nx >= CELL && nx < XRES-CELL); bool y_ok = (ny >= CELL && ny < YRES-CELL); if (!x_ok) nxf = remainder_p(nxf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f; if (!y_ok) nyf = remainder_p(nyf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f; nx = (int)(nxf+0.5f); ny = (int)(nyf+0.5f); /*if (!x_ok || !y_ok) { //make sure there isn't something blocking it on the other side //only needed if this if statement is moved after the try_move (like my mod) //if (!eval_move(t, nx, ny, NULL) || (t == PT_PHOT && pmap[ny][nx])) // return -1; }*/ } if (parts[i].type == PT_NONE) return 0; result = try_move(i, x, y, nx, ny); if (result) { int t = parts[i].type; parts[i].x = nxf; parts[i].y = nyf; if (ny!=y || nx!=x) { if ((pmap[y][x]>>8)==i) pmap[y][x] = 0; else if ((photons[y][x]>>8)==i) photons[y][x] = 0; if (nx=XRES-CELL || ny=YRES-CELL)//kill_part if particle is out of bounds { kill_part(i); return -1; } if (elements[t].Properties & TYPE_ENERGY) photons[ny][nx] = t|(i<<8); else if (t) pmap[ny][nx] = t|(i<<8); } } return result; } int Simulation::pn_junction_sprk(int x, int y, int pt) { int r = pmap[y][x]; if ((r & 0xFF) != pt) return 0; r >>= 8; if (parts[r].type != pt) return 0; if (parts[r].life != 0) return 0; parts[r].ctype = pt; part_change_type(r,x,y,PT_SPRK); parts[r].life = 4; return 1; } void Simulation::photoelectric_effect(int nx, int ny)//create sparks from PHOT when hitting PSCN and NSCN { unsigned r = pmap[ny][nx]; if ((r&0xFF) == PT_PSCN) { if ((pmap[ny][nx-1] & 0xFF) == PT_NSCN || (pmap[ny][nx+1] & 0xFF) == PT_NSCN || (pmap[ny-1][nx] & 0xFF) == PT_NSCN || (pmap[ny+1][nx] & 0xFF) == PT_NSCN) pn_junction_sprk(nx, ny, PT_PSCN); } } unsigned Simulation::direction_to_map(float dx, float dy, int t) { // TODO: // Adding extra directions causes some inaccuracies. // Not adding them causes problems with some diagonal surfaces (photons absorbed instead of reflected). // For now, don't add them. // Solution may involve more intelligent setting of initial i0 value in find_next_boundary? // or rewriting normal/boundary finding code return (dx >= 0) | (((dx + dy) >= 0) << 1) | /* 567 */ ((dy >= 0) << 2) | /* 4+0 */ (((dy - dx) >= 0) << 3) | /* 321 */ ((dx <= 0) << 4) | (((dx + dy) <= 0) << 5) | ((dy <= 0) << 6) | (((dy - dx) <= 0) << 7); /* return (dx >= -0.001) | (((dx + dy) >= -0.001) << 1) | // 567 ((dy >= -0.001) << 2) | // 4+0 (((dy - dx) >= -0.001) << 3) | // 321 ((dx <= 0.001) << 4) | (((dx + dy) <= 0.001) << 5) | ((dy <= 0.001) << 6) | (((dy - dx) <= 0.001) << 7); }*/ } int Simulation::is_blocking(int t, int x, int y) { if (t & REFRACT) { if (x<0 || y<0 || x>=XRES || y>=YRES) return 0; if ((pmap[y][x] & 0xFF) == PT_GLAS || (pmap[y][x] & 0xFF) == PT_BGLA) return 1; return 0; } return !eval_move(t, x, y, NULL); } int Simulation::is_boundary(int pt, int x, int y) { if (!is_blocking(pt,x,y)) return 0; if (is_blocking(pt,x,y-1) && is_blocking(pt,x,y+1) && is_blocking(pt,x-1,y) && is_blocking(pt,x+1,y)) return 0; return 1; } int Simulation::find_next_boundary(int pt, int *x, int *y, int dm, int *em) { static int dx[8] = {1,1,0,-1,-1,-1,0,1}; static int dy[8] = {0,1,1,1,0,-1,-1,-1}; static int de[8] = {0x83,0x07,0x0E,0x1C,0x38,0x70,0xE0,0xC1}; int i, ii, i0; if (*x <= 0 || *x >= XRES-1 || *y <= 0 || *y >= YRES-1) return 0; if (*em != -1) { i0 = *em; dm &= de[i0]; } else i0 = 0; for (ii=0; ii<8; ii++) { i = (ii + i0) & 7; if ((dm & (1 << i)) && is_boundary(pt, *x+dx[i], *y+dy[i])) { *x += dx[i]; *y += dy[i]; *em = i; return 1; } } return 0; } int Simulation::get_normal(int pt, int x, int y, float dx, float dy, float *nx, float *ny) { int ldm, rdm, lm, rm; int lx, ly, lv, rx, ry, rv; int i, j; float r, ex, ey; if (!dx && !dy) return 0; if (!is_boundary(pt, x, y)) return 0; ldm = direction_to_map(-dy, dx, pt); rdm = direction_to_map(dy, -dx, pt); lx = rx = x; ly = ry = y; lv = rv = 1; lm = rm = -1; j = 0; for (i=0; i= NORMAL_INTERP) return 0; if (pt == PT_PHOT) photoelectric_effect(x, y); return get_normal(pt, x, y, dx, dy, nx, ny); } void Simulation::kill_part(int i)//kills particle number i { int x = (int)(parts[i].x+0.5f); int y = (int)(parts[i].y+0.5f); if (x>=0 && y>=0 && x>8)==i) pmap[y][x] = 0; else if ((photons[y][x]>>8)==i) photons[y][x] = 0; } if (parts[i].type == PT_NONE) return; if(parts[i].type > 0 && parts[i].type < PT_NUM && elementCount[parts[i].type]) elementCount[parts[i].type]--; switch (parts[i].type) { case PT_STKM: player.spwn = 0; break; case PT_STKM2: player2.spwn = 0; break; case PT_SPAWN: if (player.spawnID == i) player.spawnID = -1; break; case PT_SPAWN2: if (player2.spawnID == i) player2.spawnID = -1; break; case PT_FIGH: fighters[(unsigned char)parts[i].tmp].spwn = 0; fighcount--; break; case PT_SOAP: Element_SOAP::detach(this, i); break; case PT_ETRD: if (parts[i].life == 0) etrd_life0_count--; break; } parts[i].type = PT_NONE; parts[i].life = pfree; pfree = i; } void Simulation::part_change_type(int i, int x, int y, int t)//changes the type of particle number i, to t. This also changes pmap at the same time. { if (x<0 || y<0 || x>=XRES || y>=YRES || i>=NPART || t<0 || t>=PT_NUM || !parts[i].type) return; if (!elements[t].Enabled) t = PT_NONE; if (t == PT_NONE) { kill_part(i); return; } else if ((t == PT_STKM || t == PT_STKM2 || t == PT_SPAWN || t == PT_SPAWN2) && elementCount[t]) { kill_part(i); return; } else if ((t == PT_STKM && player.spwn) || (t == PT_STKM2 && player2.spwn)) { kill_part(i); return; } if (parts[i].type == PT_STKM) player.spwn = 0; else if (parts[i].type == PT_STKM2) player2.spwn = 0; else if (parts[i].type == PT_SPAWN) { if (player.spawnID == i) player.spawnID = -1; } else if (parts[i].type == PT_SPAWN2) { if (player2.spawnID == i) player2.spawnID = -1; } else if (parts[i].type == PT_FIGH) { fighters[(unsigned char)parts[i].tmp].spwn = 0; fighcount--; } else if (parts[i].type == PT_SOAP) Element_SOAP::detach(this, i); else if (parts[i].type == PT_ETRD && parts[i].life == 0) etrd_life0_count--; if (parts[i].type > 0 && parts[i].type < PT_NUM && elementCount[parts[i].type]) elementCount[parts[i].type]--; elementCount[t]++; if (t == PT_SPAWN && player.spawnID < 0) player.spawnID = i; else if (t == PT_SPAWN2 && player2.spawnID < 0) player2.spawnID = i; else if (t == PT_STKM) Element_STKM::STKM_init_legs(this, &player, i); else if (t == PT_STKM2) Element_STKM::STKM_init_legs(this, &player2, i); else if (t == PT_FIGH) { if (parts[i].tmp >= 0 && parts[i].tmp < MAX_FIGHTERS) Element_STKM::STKM_init_legs(this, &fighters[parts[i].tmp], i); } else if (t == PT_ETRD && parts[i].life == 0) etrd_life0_count++; parts[i].type = t; if (elements[t].Properties & TYPE_ENERGY) { photons[y][x] = t|(i<<8); if ((pmap[y][x]>>8)==i) pmap[y][x] = 0; } else { pmap[y][x] = t|(i<<8); if ((photons[y][x]>>8)==i) photons[y][x] = 0; } } //the function for creating a particle, use p=-1 for creating a new particle, -2 is from a brush, or a particle number to replace a particle. //tv = Type (8 bits) + Var (24 bits), var is usually 0 int Simulation::create_part(int p, int x, int y, int t, int v) { int i; if (x<0 || y<0 || x>=XRES || y>=YRES) return -1; if (t>=0 && t>8; if(type == PT_WIRE) { parts[index].ctype = PT_DUST; return index; } if (p==-2 && ((elements[type].Properties & PROP_DRAWONCTYPE) || type==PT_CRAY)) { parts[index].ctype = PT_SPRK; return index; } if (!(type == PT_INST || (elements[type].Properties&PROP_CONDUCTS)) || parts[index].life!=0) return -1; if (p == -2 && type == PT_INST) { FloodINST(x, y, PT_SPRK, PT_INST); return index; } parts[index].type = PT_SPRK; parts[index].life = 4; parts[index].ctype = type; pmap[y][x] = (pmap[y][x]&~0xFF) | PT_SPRK; if (parts[index].temp+10.0f < 673.0f && !legacy_enable && (type==PT_METL || type == PT_BMTL || type == PT_BRMT || type == PT_PSCN || type == PT_NSCN || type == PT_ETRD || type == PT_NBLE || type == PT_IRON)) parts[index].temp = parts[index].temp+10.0f; return index; } else if (t==PT_SPAWN && elementCount[PT_SPAWN]) return -1; else if (t==PT_SPAWN2 && elementCount[PT_SPAWN2]) return -1; if (p==-1)//creating from anything but brush { // If there is a particle, only allow creation if the new particle can occupy the same space as the existing particle // If there isn't a particle but there is a wall, check whether the new particle is allowed to be in it // (not "!=2" for wall check because eval_move returns 1 for moving into empty space) // If there's no particle and no wall, assume creation is allowed if (pmap[y][x] ? (eval_move(t, x, y, NULL)!=2) : (bmap[y/CELL][x/CELL] && eval_move(t, x, y, NULL)==0)) { if ((pmap[y][x]&0xFF)!=PT_SPAWN&&(pmap[y][x]&0xFF)!=PT_SPAWN2) { if (t!=PT_STKM&&t!=PT_STKM2&&t!=PT_FIGH) { return -1; } } } if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else if (p==-2)//creating from brush { if (pmap[y][x]) { //If an element has the PROP_DRAWONCTYPE property, and the element being drawn to it does not have PROP_NOCTYPEDRAW (Also some special cases), set the element's ctype int drawOn = pmap[y][x]&0xFF; if (drawOn == t) return -1; if (((elements[drawOn].Properties & PROP_DRAWONCTYPE) || (drawOn == PT_STOR && !(elements[t].Properties & TYPE_SOLID)) || (drawOn == PT_PCLN && t != PT_PSCN && t != PT_NSCN) || (drawOn == PT_PBCN && t != PT_PSCN && t != PT_NSCN)) && (!(elements[t].Properties & PROP_NOCTYPEDRAW))) { parts[pmap[y][x]>>8].ctype = t; if (t == PT_LIFE && v >= 0 && v < NGOL) { if (drawOn == PT_CONV) parts[pmap[y][x]>>8].ctype |= v<<8; else if (drawOn != PT_STOR) parts[pmap[y][x]>>8].tmp = v; } } else if (drawOn == PT_DTEC || (drawOn == PT_PSTN && t != PT_FRME) || drawOn == PT_DRAY) { parts[pmap[y][x]>>8].ctype = t; if (t == PT_LIFE && v >= 0 && v < NGOL) { if (drawOn == PT_DTEC) parts[pmap[y][x]>>8].tmp = v; else if (drawOn == PT_DRAY) parts[pmap[y][x]>>8].ctype |= v<<8; } } else if (drawOn == PT_CRAY) { parts[pmap[y][x]>>8].ctype = t; if (t == PT_LIFE && v >= 0 && v < NGOL) parts[pmap[y][x]>>8].ctype |= v<<8; if (t == PT_LIGH) parts[pmap[y][x]>>8].ctype |= 30<<8; parts[pmap[y][x]>>8].temp = elements[t].Temperature; } return -1; } else if (IsWallBlocking(x, y, t)) return -1; if (photons[y][x] && (elements[t].Properties & TYPE_ENERGY)) return -1; if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else if (p==-3)//skip pmap checks, e.g. for sing explosion { if (pfree == -1) return -1; i = pfree; pfree = parts[i].life; } else { int oldX = (int)(parts[p].x+0.5f); int oldY = (int)(parts[p].y+0.5f); if ((pmap[oldY][oldX]>>8)==p) pmap[oldY][oldX] = 0; if ((photons[oldY][oldX]>>8)==p) photons[oldY][oldX] = 0; if (parts[p].type == PT_STKM) { player.spwn = 0; } else if (parts[p].type == PT_STKM2) { player2.spwn = 0; } else if (parts[p].type == PT_FIGH) { fighters[(unsigned char)parts[p].tmp].spwn = 0; fighcount--; } else if (parts[p].type == PT_SOAP) { Element_SOAP::detach(this, p); } else if (parts[p].type == PT_ETRD && parts[p].life == 0) etrd_life0_count--; i = p; } if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; parts[i].x = (float)x; parts[i].y = (float)y; parts[i].type = t; parts[i].vx = 0; parts[i].vy = 0; parts[i].life = 0; parts[i].ctype = 0; parts[i].temp = elements[t].Temperature; parts[i].tmp = 0; parts[i].tmp2 = 0; parts[i].dcolour = 0; parts[i].flags = 0; if (t == PT_GLAS || t == PT_QRTZ || t == PT_TUNG) { parts[i].pavg[0] = 0.0f; parts[i].pavg[1] = pv[y/CELL][x/CELL]; } else { parts[i].pavg[0] = 0.0f; parts[i].pavg[1] = 0.0f; } switch (t) { case PT_SOAP: parts[i].tmp = -1; parts[i].tmp2 = -1; break; case PT_ACID: case PT_CAUS: parts[i].life = 75; break; case PT_WARP: parts[i].life = rand()%95+70; break; case PT_FUSE: parts[i].life = 50; parts[i].tmp = 50; break; case PT_LIFE: if (v < NGOL) { parts[i].tmp = grule[v+1][9] - 1; parts[i].ctype = v; } break; case PT_DEUT: parts[i].life = 10; break; case PT_MERC: parts[i].tmp = 10; break; case PT_BRAY: parts[i].life = 30; break; case PT_GPMP: case PT_PUMP: parts[i].life = 10; break; case PT_SING: parts[i].life = rand()%50+60; break; case PT_QRTZ: case PT_PQRT: parts[i].tmp2 = (rand()%11); break; case PT_CLST: parts[i].tmp = (rand()%7); break; case PT_FSEP: parts[i].life = 50; break; case PT_COAL: parts[i].life = 110; parts[i].tmp = 50; break; case PT_IGNT: parts[i].life = 3; break; case PT_FRZW: parts[i].life = 100; break; case PT_PPIP: case PT_PIPE: parts[i].life = 60; break; case PT_BCOL: parts[i].life = 110; break; case PT_FIRE: parts[i].life = rand()%50+120; break; case PT_PLSM: parts[i].life = rand()%150+50; break; case PT_CFLM: parts[i].life = rand()%150+50; break; case PT_LAVA: parts[i].life = rand()%120+240; break; case PT_NBLE: parts[i].life = 0; break; case PT_ICEI: parts[i].ctype = PT_WATR; break; case PT_MORT: parts[i].vx = 2; break; case PT_EXOT: parts[i].life = 1000; parts[i].tmp = 244; break; case PT_EMBR: parts[i].life = 50; break; case PT_TESC: parts[i].tmp = v; if (parts[i].tmp > 300) parts[i].tmp=300; break; case PT_BIZR: case PT_BIZRG: case PT_BIZRS: parts[i].ctype = 0x47FFFF; break; case PT_DTEC: case PT_TSNS: case PT_LSNS: parts[i].tmp2 = 2; break; case PT_VINE: parts[i].tmp = 1; break; case PT_VIRS: case PT_VRSS: case PT_VRSG: parts[i].pavg[1] = 250; break; case PT_CRMC: parts[i].tmp2 = (rand() % 5); break; case PT_ETRD: etrd_life0_count++; break; case PT_STKM: { if (player.spwn == 0) { parts[i].life = 100; Element_STKM::STKM_init_legs(this, &player, i); player.spwn = 1; player.rocketBoots = false; } else { parts[i].type = 0; return -1; } int spawnID = create_part(-3, x, y, PT_SPAWN); if (spawnID >= 0) player.spawnID = spawnID; break; } case PT_STKM2: { if (player2.spwn == 0) { parts[i].life = 100; Element_STKM::STKM_init_legs(this, &player2, i); player2.spwn = 1; player2.rocketBoots = false; } else { parts[i].type = 0; return -1; } int spawnID = create_part(-3, x, y, PT_SPAWN2); if (spawnID >= 0) player2.spawnID = spawnID; break; } case PT_FIGH: { unsigned char fcount = 0; while (fcount < MAX_FIGHTERS && fighters[fcount].spwn==1) fcount++; if (fcount < MAX_FIGHTERS && fighters[fcount].spwn == 0) { parts[i].life = 100; parts[i].tmp = fcount; Element_STKM::STKM_init_legs(this, &fighters[fcount], i); fighters[fcount].spwn = 1; fighters[fcount].elem = PT_DUST; fighters[fcount].rocketBoots = false; fighcount++; return i; } parts[i].type=0; return -1; } case PT_PHOT: { float a = (rand()%8) * 0.78540f; parts[i].life = 680; parts[i].ctype = 0x3FFFFFFF; parts[i].vx = 3.0f*cosf(a); parts[i].vy = 3.0f*sinf(a); if ((pmap[y][x]&0xFF) == PT_FILT) parts[i].ctype = Element_FILT::interactWavelengths(&parts[pmap[y][x]>>8], parts[i].ctype); break; } case PT_ELEC: { float a = (rand()%360)*3.14159f/180.0f; parts[i].life = 680; parts[i].vx = 2.0f*cosf(a); parts[i].vy = 2.0f*sinf(a); break; } case PT_NEUT: { float r = (rand()%128+128)/127.0f; float a = (rand()%360)*3.14159f/180.0f; parts[i].life = rand()%480+480; parts[i].vx = r*cosf(a); parts[i].vy = r*sinf(a); break; } case PT_PROT: { float a = (rand()%36)* 0.17453f; parts[i].life = 680; parts[i].vx = 2.0f*cosf(a); parts[i].vy = 2.0f*sinf(a); break; } case PT_GRVT: { float a = (rand()%360)*3.14159f/180.0f; parts[i].life = 250 + rand()%200; parts[i].vx = 2.0f*cosf(a); parts[i].vy = 2.0f*sinf(a); parts[i].tmp = 7; break; } case PT_TRON: { int randhue = rand()%360; int randomdir = rand()%4; parts[i].tmp = 1|(randomdir<<5)|(randhue<<7);//set as a head and a direction parts[i].tmp2 = 4;//tail parts[i].life = 5; break; } case PT_LIGH: { float gx, gy, gsize; if (v >= 0) { if (v > 55) v = 55; parts[i].life = v; } else parts[i].life = 30; parts[i].temp = parts[i].life*150.0f; // temperature of the lightning shows the power of the lightning GetGravityField(x, y, 1.0f, 1.0f, gx, gy); gsize = gx*gx+gy*gy; if (gsize<0.0016f) { float angle = (rand()%6284)*0.001f;//(in radians, between 0 and 2*pi) gsize = sqrtf(gsize); // randomness in weak gravity fields (more randomness with weaker fields) gx += cosf(angle)*(0.04f-gsize); gy += sinf(angle)*(0.04f-gsize); } parts[i].tmp = (((int)(atan2f(-gy, gx)*(180.0f/M_PI)))+rand()%40-20+360)%360; parts[i].tmp2 = 4; break; } case PT_FILT: parts[i].tmp = v; break; default: break; } //and finally set the pmap/photon maps to the newly created particle if (elements[t].Properties & TYPE_ENERGY) photons[y][x] = t|(i<<8); else if (t!=PT_STKM && t!=PT_STKM2 && t!=PT_FIGH) pmap[y][x] = t|(i<<8); //Fancy dust effects for powder types if((elements[t].Properties & TYPE_PART) && pretty_powder) { int colr, colg, colb; colr = PIXR(elements[t].Colour)+sandcolour*1.3+(rand()%40)-20+(rand()%30)-15; colg = PIXG(elements[t].Colour)+sandcolour*1.3+(rand()%40)-20+(rand()%30)-15; colb = PIXB(elements[t].Colour)+sandcolour*1.3+(rand()%40)-20+(rand()%30)-15; colr = colr>255 ? 255 : (colr<0 ? 0 : colr); colg = colg>255 ? 255 : (colg<0 ? 0 : colg); colb = colb>255 ? 255 : (colb<0 ? 0 : colb); parts[i].dcolour = ((rand()%150)<<24) | (colr<<16) | (colg<<8) | colb; } elementCount[t]++; return i; } void Simulation::GetGravityField(int x, int y, float particleGrav, float newtonGrav, float & pGravX, float & pGravY) { pGravX = newtonGrav*gravx[(y/CELL)*(XRES/CELL)+(x/CELL)]; pGravY = newtonGrav*gravy[(y/CELL)*(XRES/CELL)+(x/CELL)]; switch (gravityMode) { default: case 0: //normal, vertical gravity pGravY += particleGrav; break; case 1: //no gravity break; case 2: //radial gravity if (x-XCNTR != 0 || y-YCNTR != 0) { float pGravMult = particleGrav/sqrtf((x-XCNTR)*(x-XCNTR) + (y-YCNTR)*(y-YCNTR)); pGravX -= pGravMult * (float)(x - XCNTR); pGravY -= pGravMult * (float)(y - YCNTR); } } } void Simulation::create_gain_photon(int pp)//photons from PHOT going through GLOW { float xx, yy; int i, lr, temp_bin, nx, ny; if (pfree == -1) return; i = pfree; lr = rand() % 2; if (lr) { xx = parts[pp].x - 0.3*parts[pp].vy; yy = parts[pp].y + 0.3*parts[pp].vx; } else { xx = parts[pp].x + 0.3*parts[pp].vy; yy = parts[pp].y - 0.3*parts[pp].vx; } nx = (int)(xx + 0.5f); ny = (int)(yy + 0.5f); if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) return; if ((pmap[ny][nx] & 0xFF) != PT_GLOW) return; pfree = parts[i].life; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; parts[i].type = PT_PHOT; parts[i].life = 680; parts[i].x = xx; parts[i].y = yy; parts[i].vx = parts[pp].vx; parts[i].vy = parts[pp].vy; parts[i].temp = parts[pmap[ny][nx] >> 8].temp; parts[i].tmp = 0; parts[i].pavg[0] = parts[i].pavg[1] = 0.0f; photons[ny][nx] = PT_PHOT|(i<<8); temp_bin = (int)((parts[i].temp-273.0f)*0.25f); if (temp_bin < 0) temp_bin = 0; if (temp_bin > 25) temp_bin = 25; parts[i].ctype = 0x1F << temp_bin; } void Simulation::create_cherenkov_photon(int pp)//photons from NEUT going through GLAS { int i, lr, nx, ny; float r; if (pfree == -1) return; i = pfree; nx = (int)(parts[pp].x + 0.5f); ny = (int)(parts[pp].y + 0.5f); if ((pmap[ny][nx] & 0xFF) != PT_GLAS && (pmap[ny][nx] & 0xFF) != PT_BGLA) return; if (hypotf(parts[pp].vx, parts[pp].vy) < 1.44f) return; pfree = parts[i].life; if (i>parts_lastActiveIndex) parts_lastActiveIndex = i; lr = rand() % 2; parts[i].type = PT_PHOT; parts[i].ctype = 0x00000F80; parts[i].life = 680; parts[i].x = parts[pp].x; parts[i].y = parts[pp].y; parts[i].temp = parts[pmap[ny][nx] >> 8].temp; parts[i].tmp = 0; parts[i].pavg[0] = parts[i].pavg[1] = 0.0f; photons[ny][nx] = PT_PHOT|(i<<8); if (lr) { parts[i].vx = parts[pp].vx - 2.5f*parts[pp].vy; parts[i].vy = parts[pp].vy + 2.5f*parts[pp].vx; } else { parts[i].vx = parts[pp].vx + 2.5f*parts[pp].vy; parts[i].vy = parts[pp].vy - 2.5f*parts[pp].vx; } /* photons have speed of light. no discussion. */ r = 1.269 / hypotf(parts[i].vx, parts[i].vy); parts[i].vx *= r; parts[i].vy *= r; } void Simulation::delete_part(int x, int y)//calls kill_part with the particle located at x,y { unsigned i; if (x<0 || y<0 || x>=XRES || y>=YRES) return; if (photons[y][x]) { i = photons[y][x]; } else { i = pmap[y][x]; } if (!i) return; kill_part(i>>8); } void Simulation::UpdateParticles(int start, int end) { int i, j, x, y, t, nx, ny, r, surround_space, s, rt, nt; float mv, dx, dy, nrx, nry, dp, ctemph, ctempl, gravtot; int fin_x, fin_y, clear_x, clear_y, stagnant; float fin_xf, fin_yf, clear_xf, clear_yf; float nn, ct1, ct2, swappage; float pt = R_TEMP; float c_heat = 0.0f; int h_count = 0; int surround[8]; int surround_hconduct[8]; float pGravX, pGravY, pGravD; bool transitionOccurred; //the main particle loop function, goes over all particles. for (i = start; i <= end && i <= parts_lastActiveIndex; i++) if (parts[i].type) { t = parts[i].type; x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); //this kills any particle out of the screen, or in a wall where it isn't supposed to go if (x=XRES-CELL || y>=YRES-CELL || (bmap[y/CELL][x/CELL] && (bmap[y/CELL][x/CELL]==WL_WALL || bmap[y/CELL][x/CELL]==WL_WALLELEC || bmap[y/CELL][x/CELL]==WL_ALLOWAIR || (bmap[y/CELL][x/CELL]==WL_DESTROYALL) || (bmap[y/CELL][x/CELL]==WL_ALLOWLIQUID && !(elements[t].Properties&TYPE_LIQUID)) || (bmap[y/CELL][x/CELL]==WL_ALLOWPOWDER && !(elements[t].Properties&TYPE_PART)) || (bmap[y/CELL][x/CELL]==WL_ALLOWGAS && !(elements[t].Properties&TYPE_GAS)) || //&& elements[t].Falldown!=0 && parts[i].type!=PT_FIRE && parts[i].type!=PT_SMKE && parts[i].type!=PT_CFLM) || (bmap[y/CELL][x/CELL]==WL_ALLOWENERGY && !(elements[t].Properties&TYPE_ENERGY)) || (bmap[y/CELL][x/CELL]==WL_DETECT && (t==PT_METL || t==PT_SPRK)) || (bmap[y/CELL][x/CELL]==WL_EWALL && !emap[y/CELL][x/CELL])) && (t!=PT_STKM) && (t!=PT_STKM2) && (t!=PT_FIGH))) { kill_part(i); continue; } if (bmap[y/CELL][x/CELL]==WL_DETECT && emap[y/CELL][x/CELL]<8) set_emap(x/CELL, y/CELL); //adding to velocity from the particle's velocity vx[y/CELL][x/CELL] = vx[y/CELL][x/CELL]*elements[t].AirLoss + elements[t].AirDrag*parts[i].vx; vy[y/CELL][x/CELL] = vy[y/CELL][x/CELL]*elements[t].AirLoss + elements[t].AirDrag*parts[i].vy; if (elements[t].HotAir) { if (t==PT_GAS||t==PT_NBLE) { if (pv[y/CELL][x/CELL]<3.5f) pv[y/CELL][x/CELL] += elements[t].HotAir*(3.5f-pv[y/CELL][x/CELL]); if (y+CELL= 0 && y-2 < YRES && (elements[t].Properties&TYPE_LIQUID) && (t!=PT_GEL || gel_scale>(1+rand()%255))) {//some heat convection for liquids r = pmap[y-2][x]; if (!(!r || parts[i].type != (r&0xFF))) { if (parts[i].temp>parts[r>>8].temp) { swappage = parts[i].temp; parts[i].temp = parts[r>>8].temp; parts[r>>8].temp = swappage; } } } //heat transfer code h_count = 0; #ifdef REALISTIC if (t&&(t!=PT_HSWC||parts[i].life==10)&&(elements[t].HeatConduct*gel_scale)) #else if (t&&(t!=PT_HSWC||parts[i].life==10)&&(elements[t].HeatConduct*gel_scale)>(rand()%250)) #endif { if (aheat_enable && !(elements[t].Properties&PROP_NOAMBHEAT)) { #ifdef REALISTIC c_heat = parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight) + hv[y/CELL][x/CELL]*100*(pv[y/CELL][x/CELL]+273.15f)/256; float c_Cm = 96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight) + 100*(pv[y/CELL][x/CELL]+273.15f)/256; pt = c_heat/c_Cm; pt = restrict_flt(pt, -MAX_TEMP+MIN_TEMP, MAX_TEMP-MIN_TEMP); parts[i].temp = pt; //Pressure increase from heat (temporary) pv[y/CELL][x/CELL] += (pt-hv[y/CELL][x/CELL])*0.004; hv[y/CELL][x/CELL] = pt; #else c_heat = (hv[y/CELL][x/CELL]-parts[i].temp)*0.04; c_heat = restrict_flt(c_heat, -MAX_TEMP+MIN_TEMP, MAX_TEMP-MIN_TEMP); parts[i].temp += c_heat; hv[y/CELL][x/CELL] -= c_heat; #endif } c_heat = 0.0f; #ifdef REALISTIC float c_Cm = 0.0f; #endif for (j=0; j<8; j++) { surround_hconduct[j] = i; r = surround[j]; if (!r) continue; rt = r&0xFF; if (rt&&elements[rt].HeatConduct&&(rt!=PT_HSWC||parts[r>>8].life==10) &&(t!=PT_FILT||(rt!=PT_BRAY&&rt!=PT_BIZR&&rt!=PT_BIZRG)) &&(rt!=PT_FILT||(t!=PT_BRAY&&t!=PT_PHOT&&t!=PT_BIZR&&t!=PT_BIZRG)) &&(t!=PT_ELEC||rt!=PT_DEUT) &&(t!=PT_DEUT||rt!=PT_ELEC)) { surround_hconduct[j] = r>>8; #ifdef REALISTIC if (rt==PT_GEL) gel_scale = parts[r>>8].tmp*2.55f; else gel_scale = 1.0f; c_heat += parts[r>>8].temp*96.645/elements[rt].HeatConduct*gel_scale*fabs(elements[rt].Weight); c_Cm += 96.645/elements[rt].HeatConduct*gel_scale*fabs(elements[rt].Weight); #else c_heat += parts[r>>8].temp; #endif h_count++; } } #ifdef REALISTIC if (t==PT_GEL) gel_scale = parts[i].tmp*2.55f; else gel_scale = 1.0f; if (t == PT_PHOT) pt = (c_heat+parts[i].temp*96.645)/(c_Cm+96.645); else pt = (c_heat+parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight))/(c_Cm+96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight)); c_heat += parts[i].temp*96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight); c_Cm += 96.645/elements[t].HeatConduct*gel_scale*fabs(elements[t].Weight); parts[i].temp = restrict_flt(pt, MIN_TEMP, MAX_TEMP); #else pt = (c_heat+parts[i].temp)/(h_count+1); pt = parts[i].temp = restrict_flt(pt, MIN_TEMP, MAX_TEMP); for (j=0; j<8; j++) { parts[surround_hconduct[j]].temp = pt; } #endif ctemph = ctempl = pt; // change boiling point with pressure if (((elements[t].Properties&TYPE_LIQUID) && IsValidElement(elements[t].HighTemperatureTransition) && (elements[elements[t].HighTemperatureTransition].Properties&TYPE_GAS)) || t==PT_LNTG || t==PT_SLTW) ctemph -= 2.0f*pv[y/CELL][x/CELL]; else if (((elements[t].Properties&TYPE_GAS) && IsValidElement(elements[t].LowTemperatureTransition) && (elements[elements[t].LowTemperatureTransition].Properties&TYPE_LIQUID)) || t==PT_WTRV) ctempl -= 2.0f*pv[y/CELL][x/CELL]; s = 1; //A fix for ice with ctype = 0 if ((t==PT_ICEI || t==PT_SNOW) && (!parts[i].ctype || !IsValidElement(parts[i].ctype) || parts[i].ctype==PT_ICEI || parts[i].ctype==PT_SNOW)) parts[i].ctype = PT_WATR; if (elements[t].HighTemperatureTransition>-1 && ctemph>=elements[t].HighTemperature) { // particle type change due to high temperature #ifdef REALISTIC float dbt = ctempl - pt; if (elements[t].HighTemperatureTransition != PT_NUM) { if (platent[t] <= (c_heat - (elements[t].HighTemperature - dbt)*c_Cm)) { pt = (c_heat - platent[t])/c_Cm; t = elements[t].HighTemperatureTransition; } else { parts[i].temp = restrict_flt(elements[t].HighTemperature - dbt, MIN_TEMP, MAX_TEMP); s = 0; } } #else if (elements[t].HighTemperatureTransition != PT_NUM) t = elements[t].HighTemperatureTransition; #endif else if (t == PT_ICEI || t == PT_SNOW) { if (parts[i].ctype > 0 && parts[i].ctype < PT_NUM && parts[i].ctype != t) { if (elements[parts[i].ctype].LowTemperatureTransition==PT_ICEI || elements[parts[i].ctype].LowTemperatureTransition==PT_SNOW) { if (pt= elements[t].HighTemperature) t = PT_LAVA; else s = 0; } else if (t == PT_CRMC) { float pres = std::max((pv[y/CELL][x/CELL]+pv[(y-2)/CELL][x/CELL]+pv[(y+2)/CELL][x/CELL]+pv[y/CELL][(x-2)/CELL]+pv[y/CELL][(x+2)/CELL])*2.0f, 0.0f); if (ctemph < pres+elements[PT_CRMC].HighTemperature) s = 0; else t = PT_LAVA; } else s = 0; } else if (elements[t].LowTemperatureTransition > -1 && ctempl= (c_heat - (elements[t].LowTemperature - dbt)*c_Cm)) { pt = (c_heat + platent[elements[t].LowTemperatureTransition])/c_Cm; t = elements[t].LowTemperatureTransition; } else { parts[i].temp = restrict_flt(elements[t].LowTemperature - dbt, MIN_TEMP, MAX_TEMP); s = 0; } } #else if (elements[t].LowTemperatureTransition != PT_NUM) t = elements[t].LowTemperatureTransition; #endif else if (t == PT_WTRV) { if (pt < 273.0f) t = PT_RIME; else t = PT_DSTW; } else if (t == PT_LAVA) { if (parts[i].ctype>0 && parts[i].ctype=elements[PT_BMTL].HighTemperature) s = 0; else if ((parts[i].ctype==PT_VIBR || parts[i].ctype==PT_BVBR) && pt>=273.15f) s = 0; else if (parts[i].ctype==PT_TUNG) { // TUNG does its own melting in its update function, so HighTemperatureTransition is not LAVA so it won't be handled by the code for HighTemperatureTransition==PT_LAVA below // However, the threshold is stored in HighTemperature to allow it to be changed from Lua if (pt>=elements[parts[i].ctype].HighTemperature) s = 0; } else if (parts[i].ctype == PT_CRMC) { float pres = std::max((pv[y/CELL][x/CELL]+pv[(y-2)/CELL][x/CELL]+pv[(y+2)/CELL][x/CELL]+pv[y/CELL][(x-2)/CELL]+pv[y/CELL][(x+2)/CELL])*2.0f, 0.0f); if (ctemph >= pres+elements[PT_CRMC].HighTemperature) s = 0; } else if (elements[parts[i].ctype].HighTemperatureTransition == PT_LAVA || parts[i].ctype == PT_HEAC) { if (pt >= elements[parts[i].ctype].HighTemperature) s = 0; } else if (pt>=973.0f) s = 0; // freezing point for lava with any other (not listed in ptransitions as turning into lava) ctype if (s) { t = parts[i].ctype; parts[i].ctype = PT_NONE; if (t == PT_THRM) { parts[i].tmp = 0; t = PT_BMTL; } if (t == PT_PLUT) { parts[i].tmp = 0; t = PT_LAVA; } } } else if (pt<973.0f) t = PT_STNE; else s = 0; } else s = 0; } else s = 0; #ifdef REALISTIC pt = restrict_flt(pt, MIN_TEMP, MAX_TEMP); for (j=0; j<8; j++) { parts[surround_hconduct[j]].temp = pt; } #endif if (s) // particle type change occurred { if (t==PT_ICEI || t==PT_LAVA || t==PT_SNOW) parts[i].ctype = parts[i].type; if (!(t==PT_ICEI && parts[i].ctype==PT_FRZW)) parts[i].life = 0; if (t == PT_FIRE) { //hackish, if tmp isn't 0 the FIRE might turn into DSTW later //idealy transitions should use create_part(i) but some elements rely on properties staying constant //and I don't feel like checking each one right now parts[i].tmp = 0; } if ((elements[t].Properties&TYPE_GAS) && !(elements[parts[i].type].Properties&TYPE_GAS)) pv[y/CELL][x/CELL] += 0.50f; if (t == PT_NONE) { kill_part(i); goto killed; } else part_change_type(i,x,y,t); // part_change_type could refuse to change the type and kill the particle // for example, changing type to STKM but one already exists // we need to account for that to not cause simulation corruption issues if (parts[i].type == PT_NONE) goto killed; if (t==PT_FIRE || t==PT_PLSM || t==PT_CFLM) parts[i].life = rand()%50+120; if (t == PT_LAVA) { if (parts[i].ctype == PT_BRMT) parts[i].ctype = PT_BMTL; else if (parts[i].ctype == PT_SAND) parts[i].ctype = PT_GLAS; else if (parts[i].ctype == PT_BGLA) parts[i].ctype = PT_GLAS; else if (parts[i].ctype == PT_PQRT) parts[i].ctype = PT_QRTZ; parts[i].life = rand()%120+240; } transitionOccurred = true; } pt = parts[i].temp = restrict_flt(parts[i].temp, MIN_TEMP, MAX_TEMP); if (t == PT_LAVA) { parts[i].life = restrict_flt((parts[i].temp-700)/7, 0.0f, 400.0f); if (parts[i].ctype==PT_THRM&&parts[i].tmp>0) { parts[i].tmp--; parts[i].temp = 3500; } if (parts[i].ctype==PT_PLUT&&parts[i].tmp>0) { parts[i].tmp--; parts[i].temp = MAX_TEMP; } } } else { if (!(air->bmap_blockairh[y/CELL][x/CELL]&0x8)) air->bmap_blockairh[y/CELL][x/CELL]++; parts[i].temp = restrict_flt(parts[i].temp, MIN_TEMP, MAX_TEMP); } } if (t==PT_LIFE) { parts[i].temp = restrict_flt(parts[i].temp-50.0f, MIN_TEMP, MAX_TEMP); } if (t==PT_WIRE) { //wire_placed = 1; } //spark updates from walls if ((elements[t].Properties&PROP_CONDUCTS) || t==PT_SPRK) { nx = x % CELL; if (nx == 0) nx = x/CELL - 1; else if (nx == CELL-1) nx = x/CELL + 1; else nx = x/CELL; ny = y % CELL; if (ny == 0) ny = y/CELL - 1; else if (ny == CELL-1) ny = y/CELL + 1; else ny = y/CELL; if (nx>=0 && ny>=0 && nx2.5f) { parts[i].life = rand()%80+180; parts[i].temp = restrict_flt(elements[PT_FIRE].Temperature + (elements[t].Flammable/2), MIN_TEMP, MAX_TEMP); t = PT_FIRE; part_change_type(i,x,y,t); pv[y/CELL][x/CELL] += 0.25f * CFDS; } s = 1; gravtot = fabs(gravy[(y/CELL)*(XRES/CELL)+(x/CELL)])+fabs(gravx[(y/CELL)*(XRES/CELL)+(x/CELL)]); if (elements[t].HighPressureTransition>-1 && pv[y/CELL][x/CELL]>elements[t].HighPressure) { // particle type change due to high pressure if (elements[t].HighPressureTransition!=PT_NUM) t = elements[t].HighPressureTransition; else if (t==PT_BMTL) { if (pv[y/CELL][x/CELL]>2.5f) t = PT_BRMT; else if (pv[y/CELL][x/CELL]>1.0f && parts[i].tmp==1) t = PT_BRMT; else s = 0; } else s = 0; } else if (elements[t].LowPressureTransition>-1 && pv[y/CELL][x/CELL]-1 && gravtot>(elements[t].HighPressure/4.0f)) { // particle type change due to high gravity if (elements[t].HighPressureTransition!=PT_NUM) t = elements[t].HighPressureTransition; else if (t==PT_BMTL) { if (gravtot>0.625f) t = PT_BRMT; else if (gravtot>0.25f && parts[i].tmp==1) t = PT_BRMT; else s = 0; } else s = 0; } else s = 0; // particle type change occurred if (s) { parts[i].life = 0; part_change_type(i,x,y,t); // part_change_type could refuse to change the type and kill the particle // for example, changing type to STKM but one already exists // we need to account for that to not cause simulation corruption issues if (parts[i].type == PT_NONE) goto killed; if (t==PT_FIRE) parts[i].life = rand()%50+120; if (t==PT_NONE) { kill_part(i); goto killed; } transitionOccurred = true; } //call the particle update function, if there is one #if !defined(RENDERER) && defined(LUACONSOLE) if (lua_el_mode[parts[i].type] == 3) { if (luacon_elementReplacement(this, i, x, y, surround_space, nt, parts, pmap) || t != parts[i].type) continue; // Need to update variables, in case they've been changed by Lua x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); } if (elements[t].Update && lua_el_mode[t] != 2) #else if (elements[t].Update) #endif { if ((*(elements[t].Update))(this, i, x, y, surround_space, nt, parts, pmap)) continue; else if (t==PT_WARP) { // Warp does some movement in its update func, update variables to avoid incorrect data in pmap x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); } } #if !defined(RENDERER) && defined(LUACONSOLE) if (lua_el_mode[parts[i].type] && lua_el_mode[parts[i].type] != 3) { if (luacon_elementReplacement(this, i, x, y, surround_space, nt, parts, pmap) || t != parts[i].type) continue; // Need to update variables, in case they've been changed by Lua x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); } #endif if(legacy_enable)//if heat sim is off Element::legacyUpdate(this, i,x,y,surround_space,nt, parts, pmap); killed: if (parts[i].type == PT_NONE)//if its dead, skip to next particle continue; if (transitionOccurred) continue; if (!parts[i].vx&&!parts[i].vy)//if its not moving, skip to next particle, movement code it next continue; mv = fmaxf(fabsf(parts[i].vx), fabsf(parts[i].vy)); if (mv < ISTP) { clear_x = x; clear_y = y; clear_xf = parts[i].x; clear_yf = parts[i].y; fin_xf = clear_xf + parts[i].vx; fin_yf = clear_yf + parts[i].vy; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); } else { if (mv > SIM_MAXVELOCITY) { parts[i].vx *= SIM_MAXVELOCITY/mv; parts[i].vy *= SIM_MAXVELOCITY/mv; mv = SIM_MAXVELOCITY; } // interpolate to see if there is anything in the way dx = parts[i].vx*ISTP/mv; dy = parts[i].vy*ISTP/mv; fin_xf = parts[i].x; fin_yf = parts[i].y; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); bool closedEholeStart = this->InBounds(fin_x, fin_y) && (bmap[fin_y/CELL][fin_x/CELL] == WL_EHOLE && !emap[fin_y/CELL][fin_x/CELL]); while (1) { mv -= ISTP; fin_xf += dx; fin_yf += dy; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); if (edgeMode == 2) { bool x_ok = (fin_xf >= CELL-.5f && fin_xf < XRES-CELL-.5f); bool y_ok = (fin_yf >= CELL-.5f && fin_yf < YRES-CELL-.5f); if (!x_ok) fin_xf = remainder_p(fin_xf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f; if (!y_ok) fin_yf = remainder_p(fin_yf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f; fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); } if (mv <= 0.0f) { // nothing found fin_xf = parts[i].x + parts[i].vx; fin_yf = parts[i].y + parts[i].vy; if (edgeMode == 2) { bool x_ok = (fin_xf >= CELL-.5f && fin_xf < XRES-CELL-.5f); bool y_ok = (fin_yf >= CELL-.5f && fin_yf < YRES-CELL-.5f); if (!x_ok) fin_xf = remainder_p(fin_xf-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f; if (!y_ok) fin_yf = remainder_p(fin_yf-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f; } fin_x = (int)(fin_xf+0.5f); fin_y = (int)(fin_yf+0.5f); clear_xf = fin_xf-dx; clear_yf = fin_yf-dy; clear_x = (int)(clear_xf+0.5f); clear_y = (int)(clear_yf+0.5f); break; } //block if particle can't move (0), or some special cases where it returns 1 (can_move = 3 but returns 1 meaning particle will be eaten) //also photons are still blocked (slowed down) by any particle (even ones it can move through), and absorb wall also blocks particles int eval = eval_move(t, fin_x, fin_y, NULL); if (!eval || (can_move[t][pmap[fin_y][fin_x]&0xFF] == 3 && eval == 1) || (t == PT_PHOT && pmap[fin_y][fin_x]) || bmap[fin_y/CELL][fin_x/CELL]==WL_DESTROYALL || closedEholeStart!=(bmap[fin_y/CELL][fin_x/CELL] == WL_EHOLE && !emap[fin_y/CELL][fin_x/CELL])) { // found an obstacle clear_xf = fin_xf-dx; clear_yf = fin_yf-dy; clear_x = (int)(clear_xf+0.5f); clear_y = (int)(clear_yf+0.5f); break; } if (bmap[fin_y/CELL][fin_x/CELL]==WL_DETECT && emap[fin_y/CELL][fin_x/CELL]<8) set_emap(fin_x/CELL, fin_y/CELL); } } stagnant = parts[i].flags & FLAG_STAGNANT; parts[i].flags &= ~FLAG_STAGNANT; if (t==PT_STKM || t==PT_STKM2 || t==PT_FIGH) { //head movement, let head pass through anything parts[i].x += parts[i].vx; parts[i].y += parts[i].vy; int nx = (int)((float)parts[i].x+0.5f); int ny = (int)((float)parts[i].y+0.5f); if (edgeMode == 2) { bool x_ok = (nx >= CELL && nx < XRES-CELL); bool y_ok = (ny >= CELL && ny < YRES-CELL); int oldnx = nx, oldny = ny; if (!x_ok) { parts[i].x = remainder_p(parts[i].x-CELL+.5f, XRES-CELL*2.0f)+CELL-.5f; nx = (int)((float)parts[i].x+0.5f); } if (!y_ok) { parts[i].y = remainder_p(parts[i].y-CELL+.5f, YRES-CELL*2.0f)+CELL-.5f; ny = (int)((float)parts[i].y+0.5f); } if (!x_ok || !y_ok) //when moving from left to right stickmen might be able to fall through solid things, fix with "eval_move(t, nx+diffx, ny+diffy, NULL)" but then they die instead { //adjust stickmen legs playerst* stickman = NULL; int t = parts[i].type; if (t == PT_STKM) stickman = &player; else if (t == PT_STKM2) stickman = &player2; else if (t == PT_FIGH && parts[i].tmp >= 0 && parts[i].tmp < MAX_FIGHTERS) stickman = &fighters[parts[i].tmp]; if (stickman) for (int i = 0; i < 16; i+=2) { stickman->legs[i] += (nx-oldnx); stickman->legs[i+1] += (ny-oldny); stickman->accs[i/2] *= .95f; } parts[i].vy *= .95f; parts[i].vx *= .95f; } } if (ny!=y || nx!=x) { if ((pmap[y][x]>>8)==i) pmap[y][x] = 0; else if ((photons[y][x]>>8)==i) photons[y][x] = 0; if (nx=XRES-CELL || ny=YRES-CELL) { kill_part(i); continue; } if (elements[t].Properties & TYPE_ENERGY) photons[ny][nx] = t|(i<<8); else if (t) pmap[ny][nx] = t|(i<<8); } } else if (elements[t].Properties & TYPE_ENERGY) { if (t == PT_PHOT) { if (parts[i].flags&FLAG_SKIPMOVE) { parts[i].flags &= ~FLAG_SKIPMOVE; continue; } if (eval_move(PT_PHOT, fin_x, fin_y, NULL)) { int rt = pmap[fin_y][fin_x] & 0xFF; int lt = pmap[y][x] & 0xFF; int rt_glas = (rt == PT_GLAS) || (rt == PT_BGLA); int lt_glas = (lt == PT_GLAS) || (lt == PT_BGLA); if ((rt_glas && !lt_glas) || (lt_glas && !rt_glas)) { if (!get_normal_interp(REFRACT|t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry)) { kill_part(i); continue; } r = get_wavelength_bin(&parts[i].ctype); if (r == -1 || !(parts[i].ctype&0x3FFFFFFF)) { kill_part(i); continue; } nn = GLASS_IOR - GLASS_DISP*(r-30)/30.0f; nn *= nn; nrx = -nrx; nry = -nry; if (rt_glas && !lt_glas) nn = 1.0f/nn; ct1 = parts[i].vx*nrx + parts[i].vy*nry; ct2 = 1.0f - (nn*nn)*(1.0f-(ct1*ct1)); if (ct2 < 0.0f) { // total internal reflection parts[i].vx -= 2.0f*ct1*nrx; parts[i].vy -= 2.0f*ct1*nry; fin_xf = parts[i].x; fin_yf = parts[i].y; fin_x = x; fin_y = y; } else { // refraction ct2 = sqrtf(ct2); ct2 = ct2 - nn*ct1; parts[i].vx = nn*parts[i].vx + ct2*nrx; parts[i].vy = nn*parts[i].vy + ct2*nry; } } } } if (stagnant)//FLAG_STAGNANT set, was reflected on previous frame { // cast coords as int then back to float for compatibility with existing saves if (!do_move(i, x, y, (float)fin_x, (float)fin_y) && parts[i].type) { kill_part(i); continue; } } else if (!do_move(i, x, y, fin_xf, fin_yf)) { if (parts[i].type == PT_NONE) continue; // reflection parts[i].flags |= FLAG_STAGNANT; if (t==PT_NEUT && 100>(rand()%1000)) { kill_part(i); continue; } r = pmap[fin_y][fin_x]; if (((r&0xFF)==PT_PIPE || (r&0xFF) == PT_PPIP) && !(parts[r>>8].tmp&0xFF)) { parts[r>>8].tmp = (parts[r>>8].tmp&~0xFF) | parts[i].type; parts[r>>8].temp = parts[i].temp; parts[r>>8].tmp2 = parts[i].life; parts[r>>8].pavg[0] = parts[i].tmp; parts[r>>8].pavg[1] = parts[i].ctype; kill_part(i); continue; } if (r&0xFF) parts[i].ctype &= elements[r&0xFF].PhotonReflectWavelengths; if (get_normal_interp(t, parts[i].x, parts[i].y, parts[i].vx, parts[i].vy, &nrx, &nry)) { if ((r & 0xFF) == PT_CRMC) { float r = (rand() % 101 - 50) * 0.01f, rx, ry, anrx, anry; r = r * r * r; rx = cosf(r); ry = sinf(r); anrx = rx * nrx + ry * nry; anry = rx * nry - ry * nrx; dp = anrx*parts[i].vx + anry*parts[i].vy; parts[i].vx -= 2.0f*dp*anrx; parts[i].vy -= 2.0f*dp*anry; } else { dp = nrx*parts[i].vx + nry*parts[i].vy; parts[i].vx -= 2.0f*dp*nrx; parts[i].vy -= 2.0f*dp*nry; } // leave the actual movement until next frame so that reflection of fast particles and refraction happen correctly } else { if (t!=PT_NEUT) kill_part(i); continue; } if (!(parts[i].ctype&0x3FFFFFFF) && t == PT_PHOT) { kill_part(i); continue; } } } else if (elements[t].Falldown==0) { // gasses and solids (but not powders) if (!do_move(i, x, y, fin_xf, fin_yf)) { if (parts[i].type == PT_NONE) continue; // can't move there, so bounce off // TODO // TODO: Work out what previous TODO was for if (fin_x>x+ISTP) fin_x=x+ISTP; if (fin_xy+ISTP) fin_y=y+ISTP; if (fin_y= rand()%400)//checking stagnant is cool, but then it doesn't update when you change it later. { if (!flood_water(x,y,i,y, parts[i].flags&FLAG_WATEREQUAL)) goto movedone; } // liquids and powders if (!do_move(i, x, y, fin_xf, fin_yf)) { if (parts[i].type == PT_NONE) continue; if (fin_x!=x && do_move(i, x, y, fin_xf, clear_yf)) { parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; } else if (fin_y!=y && do_move(i, x, y, clear_xf, fin_yf)) { parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; } else { s = 1; r = (rand()%2)*2-1;// position search direction (left/right first) if ((clear_x!=x || clear_y!=y || nt || surround_space) && (fabsf(parts[i].vx)>0.01f || fabsf(parts[i].vy)>0.01f)) { // allow diagonal movement if target position is blocked // but no point trying this if particle is stuck in a block of identical particles dx = parts[i].vx - parts[i].vy*r; dy = parts[i].vy + parts[i].vx*r; if (fabsf(dy)>fabsf(dx)) mv = fabsf(dy); else mv = fabsf(dx); dx /= mv; dy /= mv; if (do_move(i, x, y, clear_xf+dx, clear_yf+dy)) { parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; goto movedone; } swappage = dx; dx = dy*r; dy = -swappage*r; if (do_move(i, x, y, clear_xf+dx, clear_yf+dy)) { parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; goto movedone; } } if (elements[t].Falldown>1 && !grav->ngrav_enable && gravityMode==0 && parts[i].vy>fabsf(parts[i].vx)) { s = 0; // stagnant is true if FLAG_STAGNANT was set for this particle in previous frame if (!stagnant || nt) //nt is if there is an something else besides the current particle type, around the particle rt = 30;//slight less water lag, although it changes how it moves a lot else rt = 10; if (t==PT_GEL) rt = parts[i].tmp*0.20f+5.0f; for (j=clear_x+r; j>=0 && j>=clear_x-rt && j0) r = 1; else r = -1; if (s==1) for (j=ny+r; j>=0 && j=ny-rt && j1 && fabsf(pGravX*parts[i].vx+pGravY*parts[i].vy)>fabsf(pGravY*parts[i].vx-pGravX*parts[i].vy)) { float nxf, nyf, prev_pGravX, prev_pGravY, ptGrav = elements[t].Gravity; s = 0; // stagnant is true if FLAG_STAGNANT was set for this particle in previous frame if (!stagnant || nt) //nt is if there is an something else besides the current particle type, around the particle rt = 30;//slight less water lag, although it changes how it moves a lot else rt = 10; // clear_xf, clear_yf is the last known position that the particle should almost certainly be able to move to nxf = clear_xf; nyf = clear_yf; nx = clear_x; ny = clear_y; // Look for spaces to move horizontally (perpendicular to gravity direction), keep going until a space is found or the number of positions examined = rt for (j=0;jfabsf(pGravX)) mv = fabsf(pGravY); else mv = fabsf(pGravX); if (mv<0.0001f) break; pGravX /= mv; pGravY /= mv; // Move 1 pixel perpendicularly to gravity // r is +1/-1, to try moving left or right at random if (j) { // Not quite the gravity direction // Gravity direction + last change in gravity direction // This makes liquid movement a bit less frothy, particularly for balls of liquid in radial gravity. With radial gravity, instead of just moving along a tangent, the attempted movement will follow the curvature a bit better. nxf += r*(pGravY*2.0f-prev_pGravY); nyf += -r*(pGravX*2.0f-prev_pGravX); } else { nxf += r*pGravY; nyf += -r*pGravX; } prev_pGravX = pGravX; prev_pGravY = pGravY; // Check whether movement is allowed nx = (int)(nxf+0.5f); ny = (int)(nyf+0.5f); if (nx<0 || ny<0 || nx>=XRES || ny >=YRES) break; if ((pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]) { s = do_move(i, x, y, nxf, nyf); if (s) { // Movement was successful nx = (int)(parts[i].x+0.5f); ny = (int)(parts[i].y+0.5f); break; } // A particle of a different type, or a wall, was found. Stop trying to move any further horizontally unless the wall should be completely invisible to particles. if ((pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]!=WL_STREAM) break; } } if (s==1) { // The particle managed to move horizontally, now try to move vertically (parallel to gravity direction) // Keep going until the particle is blocked (by something that isn't the same element) or the number of positions examined = rt clear_x = nx; clear_y = ny; for (j=0;jfabsf(pGravX)) mv = fabsf(pGravY); else mv = fabsf(pGravX); if (mv<0.0001f) break; pGravX /= mv; pGravY /= mv; // Move 1 pixel in the direction of gravity nxf += pGravX; nyf += pGravY; nx = (int)(nxf+0.5f); ny = (int)(nyf+0.5f); if (nx<0 || ny<0 || nx>=XRES || ny>=YRES) break; // If the space is anything except the same element (a wall, empty space, or occupied by a particle of a different element), try to move into it if ((pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]) { s = do_move(i, clear_x, clear_y, nxf, nyf); if (s || (pmap[ny][nx]&0xFF)!=t || bmap[ny/CELL][nx/CELL]!=WL_STREAM) break; // found the edge of the liquid and movement into it succeeded, so stop moving down } } } else if (s==-1) {} // particle is out of bounds else if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {} // try moving to the last clear position else parts[i].flags |= FLAG_STAGNANT; parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; } else { // if interpolation was done, try moving to last clear position if ((clear_x!=x||clear_y!=y) && do_move(i, x, y, clear_xf, clear_yf)) {} else parts[i].flags |= FLAG_STAGNANT; parts[i].vx *= elements[t].Collision; parts[i].vy *= elements[t].Collision; } } } } movedone: continue; } //'f' was pressed (single frame) if (framerender) framerender--; } int Simulation::GetParticleType(std::string type) { char * txt = (char*)type.c_str(); // alternative names for some elements if (!strcasecmp(txt, "C4")) return PT_PLEX; else if (!strcasecmp(txt, "C5")) return PT_C5; else if (!strcasecmp(txt, "NONE")) return PT_NONE; for (int i = 1; i < PT_NUM; i++) { if (!strcasecmp(txt, elements[i].Name) && strlen(elements[i].Name) && elements[i].Enabled) { return i; } } return -1; } void Simulation::SimulateGoL() { CGOL=0; //TODO: maybe this should only loop through active particles for (int ny = CELL; ny < YRES-CELL; ny++) { //go through every particle and set neighbor map for (int nx = CELL; nx < XRES-CELL; nx++) { int r = pmap[ny][nx]; if (!r) { gol[ny][nx] = 0; continue; } if ((r&0xFF)==PT_LIFE) { int golnum = parts[r>>8].ctype+1; if (golnum<=0 || golnum>NGOL) { kill_part(r>>8); continue; } gol[ny][nx] = golnum; if (parts[r>>8].tmp == grule[golnum][9]-1) { for (int nnx = -1; nnx < 2; nnx++) { //it will count itself as its own neighbor, which is needed, but will have 1 extra for delete check for (int nny = -1; nny < 2; nny++) { int adx = ((nx+nnx+XRES-3*CELL)%(XRES-2*CELL))+CELL; int ady = ((ny+nny+YRES-3*CELL)%(YRES-2*CELL))+CELL; int rt = pmap[ady][adx]; if (!rt || (rt&0xFF)==PT_LIFE) { //the total neighbor count is in 0 gol2[ady][adx][0] ++; //insert golnum into neighbor table for (int i = 1; i < 9; i++) { if (!gol2[ady][adx][i]) { gol2[ady][adx][i] = (golnum<<4)+1; break; } else if((gol2[ady][adx][i]>>4)==golnum) { gol2[ady][adx][i]++; break; } } } } } } else { parts[r>>8].tmp --; } } } } for (int ny = CELL; ny < YRES-CELL; ny++) { //go through every particle again, but check neighbor map, then update particles for (int nx = CELL; nx < XRES-CELL; nx++) { int r = pmap[ny][nx]; if (r && (r&0xFF)!=PT_LIFE) continue; int neighbors = gol2[ny][nx][0]; if (neighbors) { int golnum = gol[ny][nx]; if (!r) { //Find which type we can try and create int creategol = 0xFF; for (int i = 1; i < 9; i++) { if (!gol2[ny][nx][i]) break; golnum = (gol2[ny][nx][i]>>4); if (grule[golnum][neighbors]>=2 && (gol2[ny][nx][i]&0xF)>=(neighbors%2)+neighbors/2) { if (golnum>8].tmp==grule[golnum][9]-1) parts[r>>8].tmp --; } for (int z = 0; z < 9; z++) gol2[ny][nx][z] = 0;//this improves performance A LOT compared to the memset, i was getting ~23 more fps with this. } //we still need to kill things with 0 neighbors (higher state life) if (r && parts[r>>8].tmp<=0) kill_part(r>>8); } } //memset(gol2, 0, sizeof(gol2)); } void Simulation::RecalcFreeParticles(bool do_life_dec) { int x, y, t; int lastPartUsed = 0; int lastPartUnused = -1; memset(pmap, 0, sizeof(pmap)); memset(pmap_count, 0, sizeof(pmap_count)); memset(photons, 0, sizeof(photons)); NUM_PARTS = 0; //the particle loop that resets the pmap/photon maps every frame, to update them. for (int i = 0; i <= parts_lastActiveIndex; i++) { if (parts[i].type) { t = parts[i].type; x = (int)(parts[i].x+0.5f); y = (int)(parts[i].y+0.5f); if (x>=0 && y>=0 && x=PT_NUM || !elements[t].Enabled) { kill_part(i); continue; } if (elementRecount) elementCount[t]++; unsigned int elem_properties = elements[t].Properties; if (parts[i].life>0 && (elem_properties&PROP_LIFE_DEC)) { // automatically decrease life parts[i].life--; if (parts[i].life<=0 && (elem_properties&(PROP_LIFE_KILL_DEC|PROP_LIFE_KILL))) { // kill on change to no life kill_part(i); continue; } } else if (parts[i].life<=0 && (elem_properties&PROP_LIFE_KILL)) { // kill if no life kill_part(i); continue; } } } else { if (lastPartUnused<0) pfree = i; else parts[lastPartUnused].life = i; lastPartUnused = i; } } if (lastPartUnused == -1) { if (parts_lastActiveIndex>=NPART-1) pfree = -1; else pfree = parts_lastActiveIndex+1; } else { if (parts_lastActiveIndex>=NPART-1) parts[lastPartUnused].life = -1; else parts[lastPartUnused].life = parts_lastActiveIndex+1; } parts_lastActiveIndex = lastPartUsed; if (elementRecount && (!sys_pause || framerender)) elementRecount = false; } void Simulation::CheckStacking() { bool excessive_stacking_found = false; force_stacking_check = false; for (int y = 0; y < YRES; y++) { for (int x = 0; x < XRES; x++) { // Use a threshold, since some particle stacking can be normal (e.g. BIZR + FILT) // Setting pmap_count[y][x] > NPART means BHOL will form in that spot if (pmap_count[y][x]>5) { if (bmap[y/CELL][x/CELL]==WL_EHOLE) { // Allow more stacking in E-hole if (pmap_count[y][x]>1500) { pmap_count[y][x] = pmap_count[y][x] + NPART; excessive_stacking_found = 1; } } else if (pmap_count[y][x]>1500 || (rand()%1600)<=(pmap_count[y][x]+100)) { pmap_count[y][x] = pmap_count[y][x] + NPART; excessive_stacking_found = true; } } } } if (excessive_stacking_found) { for (int i = 0; i <= parts_lastActiveIndex; i++) { if (parts[i].type) { int t = parts[i].type; int x = (int)(parts[i].x+0.5f); int y = (int)(parts[i].y+0.5f); if (x>=0 && y>=0 && x=NPART) { if (pmap_count[y][x]>NPART) { create_part(i, x, y, PT_NBHL); parts[i].temp = MAX_TEMP; parts[i].tmp = pmap_count[y][x]-NPART;//strength of grav field if (parts[i].tmp>51200) parts[i].tmp = 51200; pmap_count[y][x] = NPART; } else { kill_part(i); } } } } } } } //updates pmap, gol, and some other simulation stuff (but not particles) void Simulation::BeforeSim() { if (!sys_pause||framerender) { air->update_air(); if(aheat_enable) air->update_airh(); if(grav->ngrav_enable) { grav->gravity_update_async(); //Get updated buffer pointers for gravity gravx = grav->gravx; gravy = grav->gravy; gravp = grav->gravp; gravmap = grav->gravmap; } if(gravWallChanged) { grav->gravity_mask(); gravWallChanged = false; } if(emp_decor>0) emp_decor -= emp_decor/25+2; if(emp_decor < 0) emp_decor = 0; etrd_count_valid = false; etrd_life0_count = 0; currentTick++; elementRecount |= !(currentTick%180); if (elementRecount) std::fill(elementCount, elementCount+PT_NUM, 0); } sandcolour = (int)(20.0f*sin((float)sandcolour_frame*(M_PI/180.0f))); sandcolour_frame = (sandcolour_frame+1)%360; RecalcFreeParticles(true); if (!sys_pause || framerender) { // decrease wall conduction, make walls block air and ambient heat int x, y; for (y = 0; y < YRES/CELL; y++) { for (x = 0; x < XRES/CELL; x++) { if (emap[y][x]) emap[y][x] --; air->bmap_blockair[y][x] = (bmap[y][x]==WL_WALL || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_BLOCKAIR || (bmap[y][x]==WL_EWALL && !emap[y][x])); air->bmap_blockairh[y][x] = (bmap[y][x]==WL_WALL || bmap[y][x]==WL_WALLELEC || bmap[y][x]==WL_BLOCKAIR || bmap[y][x]==WL_GRAV || (bmap[y][x]==WL_EWALL && !emap[y][x])) ? 0x8:0; } } // check for stacking and create BHOL if found if (force_stacking_check || (rand()%10)==0) { CheckStacking(); } // LOVE and LOLZ element handling if (elementCount[PT_LOVE] > 0 || elementCount[PT_LOLZ] > 0) { int nx, nnx, ny, nny, r, rt; for (ny=0; nyYRES-7||nx>XRES-10)&&(parts[r>>8].type==PT_LOVE||parts[r>>8].type==PT_LOLZ)) kill_part(r>>8); else if (parts[r>>8].type==PT_LOVE) { Element_LOVE::love[nx/9][ny/9] = 1; } else if (parts[r>>8].type==PT_LOLZ) { Element_LOLZ::lolz[nx/9][ny/9] = 1; } } } for (nx=9; nx<=XRES-18; nx++) { for (ny=9; ny<=YRES-7; ny++) { if (Element_LOVE::love[nx/9][ny/9]==1) { for ( nnx=0; nnx<9; nnx++) for ( nny=0; nny<9; nny++) { if (ny+nny>0&&ny+nny=0&&nx+nnx>8].type==PT_LOVE&&Element_LOVE::RuleTable[nnx][nny]==0) kill_part(rt>>8); } } } Element_LOVE::love[nx/9][ny/9]=0; if (Element_LOLZ::lolz[nx/9][ny/9]==1) { for ( nnx=0; nnx<9; nnx++) for ( nny=0; nny<9; nny++) { if (ny+nny>0&&ny+nny=0&&nx+nnx>8].type==PT_LOLZ&&Element_LOLZ::RuleTable[nny][nnx]==0) kill_part(rt>>8); } } } Element_LOLZ::lolz[nx/9][ny/9]=0; } } } // make WIRE work if(elementCount[PT_WIRE] > 0) { for (int nx = 0; nx < XRES; nx++) { for (int ny = 0; ny < YRES; ny++) { int r = pmap[ny][nx]; if (!r) continue; if(parts[r>>8].type == PT_WIRE) parts[r>>8].tmp = parts[r>>8].ctype; } } } // update PPIP tmp? if (Element_PPIP::ppip_changed) { for (int i = 0; i <= parts_lastActiveIndex; i++) { if (parts[i].type==PT_PPIP) { parts[i].tmp |= (parts[i].tmp&0xE0000000)>>3; parts[i].tmp &= ~0xE0000000; } } Element_PPIP::ppip_changed = 0; } // Simulate GoL // GSPEED is frames per generation if (elementCount[PT_LIFE]>0 && ++CGOL>=GSPEED) { SimulateGoL(); } // wifi channel reseting if (ISWIRE > 0) { for (int q = 0; q < (int)(MAX_TEMP-73.15f)/100+2; q++) { wireless[q][0] = wireless[q][1]; wireless[q][1] = 0; } ISWIRE--; } // spawn STKM and STK2 if (!player.spwn && player.spawnID >= 0) create_part(-1, (int)parts[player.spawnID].x, (int)parts[player.spawnID].y, PT_STKM); else if (!player2.spwn && player2.spawnID >= 0) create_part(-1, (int)parts[player2.spawnID].x, (int)parts[player2.spawnID].y, PT_STKM2); // particle update happens right after this function (called separately) } } void Simulation::AfterSim() { if (emp_trigger_count) { Element_EMP::Trigger(this, emp_trigger_count); emp_trigger_count = 0; } } Simulation::~Simulation() { delete[] platent; delete grav; delete air; for (size_t i = 0; i < tools.size(); i++) delete tools[i]; } Simulation::Simulation(): replaceModeSelected(0), replaceModeFlags(0), debug_currentParticle(0), ISWIRE(0), force_stacking_check(false), emp_decor(0), emp_trigger_count(0), etrd_count_valid(false), etrd_life0_count(0), lightningRecreate(0), gravWallChanged(false), CGOL(0), GSPEED(1), edgeMode(0), gravityMode(0), legacy_enable(0), aheat_enable(0), water_equal_test(0), sys_pause(0), framerender(0), pretty_powder(0), sandcolour_frame(0) { int tportal_rx[] = {-1, 0, 1, 1, 1, 0,-1,-1}; int tportal_ry[] = {-1,-1,-1, 0, 1, 1, 1, 0}; memcpy(portal_rx, tportal_rx, sizeof(tportal_rx)); memcpy(portal_ry, tportal_ry, sizeof(tportal_ry)); currentTick = 0; std::fill(elementCount, elementCount+PT_NUM, 0); elementRecount = true; //Create and attach gravity simulation grav = new Gravity(); //Give air sim references to our data grav->bmap = bmap; //Gravity sim gives us maps to use gravx = grav->gravx; gravy = grav->gravy; gravp = grav->gravp; gravmap = grav->gravmap; //Create and attach air simulation air = new Air(*this); //Give air sim references to our data air->bmap = bmap; air->emap = emap; air->fvx = fvx; air->fvy = fvy; //Air sim gives us maps to use vx = air->vx; vy = air->vy; pv = air->pv; hv = air->hv; int menuCount; menu_section * msectionsT = LoadMenus(menuCount); memcpy(msections, msectionsT, menuCount * sizeof(menu_section)); free(msectionsT); int wallCount; wall_type * wtypesT = LoadWalls(wallCount); memcpy(wtypes, wtypesT, wallCount * sizeof(wall_type)); free(wtypesT); platent = new unsigned[PT_NUM]; int latentCount; unsigned int * platentT = LoadLatent(latentCount); memcpy(platent, platentT, latentCount * sizeof(unsigned int)); free(platentT); std::vector elementList = GetElements(); for(int i = 0; i < PT_NUM; i++) { if (i < (int)elementList.size()) elements[i] = elementList[i]; else elements[i] = Element(); } tools = GetTools(); int golRulesCount; int * golRulesT = LoadGOLRules(golRulesCount); memcpy(grule, golRulesT, sizeof(int) * (golRulesCount*10)); free(golRulesT); int golTypesCount; int * golTypesT = LoadGOLTypes(golTypesCount); memcpy(goltype, golTypesT, sizeof(int) * (golTypesCount)); free(golTypesT); int golMenuCount; gol_menu * golMenuT = LoadGOLMenu(golMenuCount); memcpy(gmenu, golMenuT, sizeof(gol_menu) * golMenuCount); free(golMenuT); player.comm = 0; player2.comm = 0; init_can_move(); clear_sim(); grav->gravity_mask(); }