// // GameSave.cpp // The Powder Toy // // Created by Simon Robertshaw on 04/06/2012. // Copyright (c) 2012 __MyCompanyName__. All rights reserved. // #include #include #include "Config.h" #include "bson/BSON.h" #include "GameSave.h" #include "SimulationData.h" GameSave::GameSave(GameSave & save) : waterEEnabled(save.waterEEnabled), legacyEnable(save.legacyEnable), gravityEnable(save.gravityEnable), paused(save.paused), gravityMode(save.gravityMode), airMode(save.airMode), signs(save.signs) { setSize(save.width, save.height); copy(save.particles, save.particles+NPART, particles); copy(save.blockMapPtr, save.blockMapPtr+((height/CELL)*(width/CELL)), blockMapPtr); copy(save.fanVelXPtr, save.fanVelXPtr+((height/CELL)*(width/CELL)), fanVelXPtr); copy(save.fanVelYPtr, save.fanVelYPtr+((height/CELL)*(width/CELL)), fanVelYPtr); } GameSave::GameSave(int width, int height) { setSize(width, height); } GameSave::GameSave(char * data, int dataSize) { std::cout << readPSv(data, dataSize) << std::endl; } void GameSave::setSize(int newWidth, int newHeight) { this->width = (newWidth/CELL)*CELL; this->height = (newHeight/CELL)*CELL; particles = new Particle[NPART]; blockMap = new unsigned char*[height/CELL]; blockMapPtr = new unsigned char[(height/CELL)*(width/CELL)]; fill(blockMapPtr, blockMapPtr+((height/CELL)*(width/CELL)), 0); for(int y = 0; y < height/CELL; y++) blockMap[y] = &blockMapPtr[y*(width/CELL)]; fanVelXPtr = new float[(height/CELL)*(width/CELL)]; fill(fanVelXPtr, fanVelXPtr+((height/CELL)*(width/CELL)), 0); fanVelX = new float*[height/CELL]; for(int y = 0; y < height/CELL; y++) fanVelX[y] = &fanVelXPtr[y*(width/CELL)]; fanVelYPtr = new float[(height/CELL)*(width/CELL)]; fill(fanVelYPtr, fanVelYPtr+((height/CELL)*(width/CELL)), 0); fanVelY = new float*[height/CELL]; for(int y = 0; y < height/CELL; y++) fanVelY[y] = &fanVelYPtr[y*(width/CELL)]; } char * GameSave::Serialise(int & dataSize) { return serialiseOPS(dataSize); } void GameSave::Transform(matrix2d transform, vector2d translate) { } GameSave::ParseResult GameSave::readOPS(char * data, int dataLength) { unsigned char * inputData = (unsigned char *)data, *bsonData = NULL, *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL; unsigned int inputDataLen = dataLength, bsonDataLen = 0, partsDataLen, partsPosDataLen, fanDataLen, wallDataLen; int i, freeIndicesCount, x, y, j; ParseResult returnCode = OK; int *freeIndices = NULL; int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH; bson b; bson_iterator iter; //Block sizes blockX = 0; blockY = 0; blockW = inputData[6]; blockH = inputData[7]; //Full size, normalised fullX = blockX*CELL; fullY = blockY*CELL; fullW = blockW*CELL; fullH = blockH*CELL; //From newer version if(inputData[4] > SAVE_VERSION) { fprintf(stderr, "Save from newer version\n"); return WrongVersion; } //Incompatible cell size if(inputData[5] > CELL) { fprintf(stderr, "Cell size mismatch\n"); return InvalidDimensions; } //Too large/off screen if(blockX+blockW > XRES/CELL || blockY+blockH > YRES/CELL) { fprintf(stderr, "Save too large\n"); return InvalidDimensions; } setSize(fullW, fullH); bsonDataLen = ((unsigned)inputData[8]); bsonDataLen |= ((unsigned)inputData[9]) << 8; bsonDataLen |= ((unsigned)inputData[10]) << 16; bsonDataLen |= ((unsigned)inputData[11]) << 24; bsonData = (unsigned char*)malloc(bsonDataLen+1); if(!bsonData) { fprintf(stderr, "Internal error while parsing save: could not allocate buffer\n"); return InternalError; } //Make sure bsonData is null terminated, since all string functions need null terminated strings //(bson_iterator_key returns a pointer into bsonData, which is then used with strcmp) bsonData[bsonDataLen] = 0; if (BZ2_bzBuffToBuffDecompress((char*)bsonData, &bsonDataLen, (char*)(inputData+12), inputDataLen-12, 0, 0)) { fprintf(stderr, "Unable to decompress\n"); return Corrupt; } bson_init_data(&b, (char*)bsonData); bson_iterator_init(&iter, &b); std::vector tempSigns; while(bson_iterator_next(&iter)) { if(strcmp(bson_iterator_key(&iter), "signs")==0) { if(bson_iterator_type(&iter)==BSON_ARRAY) { bson_iterator subiter; bson_iterator_subiterator(&iter, &subiter); while(bson_iterator_next(&subiter)) { if(strcmp(bson_iterator_key(&subiter), "sign")==0) { if(bson_iterator_type(&subiter)==BSON_OBJECT) { bson_iterator signiter; bson_iterator_subiterator(&subiter, &signiter); sign tempSign("", 0, 0, sign::Left); while(bson_iterator_next(&signiter)) { if(strcmp(bson_iterator_key(&signiter), "text")==0 && bson_iterator_type(&signiter)==BSON_STRING) { tempSign.text = bson_iterator_string(&signiter); clean_text((char*)tempSign.text.c_str(), 158-14); } else if(strcmp(bson_iterator_key(&signiter), "justification")==0 && bson_iterator_type(&signiter)==BSON_INT) { tempSign.ju = (sign::Justification)bson_iterator_int(&signiter); } else if(strcmp(bson_iterator_key(&signiter), "x")==0 && bson_iterator_type(&signiter)==BSON_INT) { tempSign.x = bson_iterator_int(&signiter)+fullX; } else if(strcmp(bson_iterator_key(&signiter), "y")==0 && bson_iterator_type(&signiter)==BSON_INT) { tempSign.y = bson_iterator_int(&signiter)+fullY; } else { fprintf(stderr, "Unknown sign property %s\n", bson_iterator_key(&signiter)); } } tempSigns.push_back(tempSign); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&subiter)); } } } } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "parts")==0) { if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsDataLen = bson_iterator_bin_len(&iter)) > 0) { partsData = (unsigned char*)bson_iterator_bin_data(&iter); } else { fprintf(stderr, "Invalid datatype of particle data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0); } } if(strcmp(bson_iterator_key(&iter), "partsPos")==0) { if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsPosDataLen = bson_iterator_bin_len(&iter)) > 0) { partsPosData = (unsigned char*)bson_iterator_bin_data(&iter); } else { fprintf(stderr, "Invalid datatype of particle position data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0); } } else if(strcmp(bson_iterator_key(&iter), "wallMap")==0) { if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (wallDataLen = bson_iterator_bin_len(&iter)) > 0) { wallData = (unsigned char*)bson_iterator_bin_data(&iter); } else { fprintf(stderr, "Invalid datatype of wall data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0); } } else if(strcmp(bson_iterator_key(&iter), "fanMap")==0) { if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (fanDataLen = bson_iterator_bin_len(&iter)) > 0) { fanData = (unsigned char*)bson_iterator_bin_data(&iter); } else { fprintf(stderr, "Invalid datatype of fan data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0); } } else if(strcmp(bson_iterator_key(&iter), "legacyEnable")==0) { if(bson_iterator_type(&iter)==BSON_BOOL) { legacyEnable = bson_iterator_bool(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "gravityEnable")==0) { if(bson_iterator_type(&iter)==BSON_BOOL) { gravityEnable = bson_iterator_bool(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "waterEEnabled")==0) { if(bson_iterator_type(&iter)==BSON_BOOL) { waterEEnabled = bson_iterator_bool(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "paused")==0) { if(bson_iterator_type(&iter)==BSON_BOOL) { paused = bson_iterator_bool(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "gravityMode")==0) { if(bson_iterator_type(&iter)==BSON_INT) { gravityMode = bson_iterator_int(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } else if(strcmp(bson_iterator_key(&iter), "airMode")==0) { if(bson_iterator_type(&iter)==BSON_INT) { airMode = bson_iterator_int(&iter); } else { fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter)); } } } //Read wall and fan data if(wallData) { j = 0; if(blockW * blockH > wallDataLen) { fprintf(stderr, "Not enough wall data\n"); goto fail; } for(x = 0; x < blockW; x++) { for(y = 0; y < blockH; y++) { if (wallData[y*blockW+x]) blockMap[blockY+y][blockX+x] = wallData[y*blockW+x]; if (wallData[y*blockW+x] == WL_FAN && fanData) { if(j+1 >= fanDataLen) { fprintf(stderr, "Not enough fan data\n"); } fanVelX[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f; fanVelY[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f; } } } } //Read particle data if(partsData && partsPosData) { int newIndex = 0, fieldDescriptor, tempTemp; int posCount, posTotal, partsPosDataIndex = 0; int saved_x, saved_y; if(fullW * fullH * 3 > partsPosDataLen) { fprintf(stderr, "Not enough particle position data\n"); goto fail; } i = 0; newIndex = 0; for (saved_y=0; saved_y=NPART) { goto fail; } //i+3 because we have 4 bytes of required fields (type (1), descriptor (2), temp (1)) if (i+3 >= partsDataLen) goto fail; x = saved_x + fullX; y = saved_y + fullY; fieldDescriptor = partsData[i+1]; fieldDescriptor |= partsData[i+2] << 8; if(x >= XRES || x < 0 || y >= YRES || y < 0) { fprintf(stderr, "Out of range [%d]: %d %d, [%d, %d], [%d, %d]\n", i, x, y, (unsigned)partsData[i+1], (unsigned)partsData[i+2], (unsigned)partsData[i+3], (unsigned)partsData[i+4]); goto fail; } if(partsData[i] >= PT_NUM) partsData[i] = PT_DMND; //Replace all invalid elements with diamond if(newIndex < 0 || newIndex >= NPART) goto fail; //Clear the particle, ready for our new properties memset(&(particles[newIndex]), 0, sizeof(Particle)); //Required fields particles[newIndex].type = partsData[i]; particles[newIndex].x = x; particles[newIndex].y = y; i+=3; //Read temp if(fieldDescriptor & 0x01) { //Full 16bit int tempTemp = partsData[i++]; tempTemp |= (((unsigned)partsData[i++]) << 8); particles[newIndex].temp = tempTemp; } else { //1 Byte room temp offset tempTemp = (char)partsData[i++]; particles[newIndex].temp = tempTemp+294.15f; } //Read life if(fieldDescriptor & 0x02) { if(i >= partsDataLen) goto fail; particles[newIndex].life = partsData[i++]; //Read 2nd byte if(fieldDescriptor & 0x04) { if(i >= partsDataLen) goto fail; particles[newIndex].life |= (((unsigned)partsData[i++]) << 8); } } //Read tmp if(fieldDescriptor & 0x08) { if(i >= partsDataLen) goto fail; particles[newIndex].tmp = partsData[i++]; //Read 2nd byte if(fieldDescriptor & 0x10) { if(i >= partsDataLen) goto fail; particles[newIndex].tmp |= (((unsigned)partsData[i++]) << 8); } } //Read ctype if(fieldDescriptor & 0x20) { if(i >= partsDataLen) goto fail; particles[newIndex].ctype = partsData[i++]; //Read additional bytes if(fieldDescriptor & 0x200) { if(i+2 >= partsDataLen) goto fail; particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 24); particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 16); particles[newIndex].ctype |= (((unsigned)partsData[i++]) << 8); } } //Read dcolour if(fieldDescriptor & 0x40) { if(i+3 >= partsDataLen) goto fail; particles[newIndex].dcolour = (((unsigned)partsData[i++]) << 24); particles[newIndex].dcolour |= (((unsigned)partsData[i++]) << 16); particles[newIndex].dcolour |= (((unsigned)partsData[i++]) << 8); particles[newIndex].dcolour |= ((unsigned)partsData[i++]); } //Read vx if(fieldDescriptor & 0x80) { if(i >= partsDataLen) goto fail; particles[newIndex].vx = (partsData[i++]-127.0f)/16.0f; } //Read vy if(fieldDescriptor & 0x100) { if(i >= partsDataLen) goto fail; particles[newIndex].vy = (partsData[i++]-127.0f)/16.0f; } //Read tmp2 if(fieldDescriptor & 0x400) { if(i >= partsDataLen) goto fail; particles[newIndex].tmp2 = partsData[i++]; } /*if ((sim->player.spwn == 1 && particles[newIndex].type==PT_STKM) || (sim->player2.spwn == 1 && particles[newIndex].type==PT_STKM2)) { particles[newIndex].type = PT_NONE; } else if (particles[newIndex].type == PT_STKM) { //STKM_init_legs(&player, newIndex); sim->player.spwn = 1; sim->player.elem = PT_DUST; } else if (particles[newIndex].type == PT_STKM2) { //STKM_init_legs(&player2, newIndex); sim->player2.spwn = 1; sim->player2.elem = PT_DUST; } else if (particles[newIndex].type == PT_FIGH) { //TODO: 100 should be replaced with a macro unsigned char fcount = 0; while (fcount < 100 && fcount < (sim->fighcount+1) && sim->fighters[fcount].spwn==1) fcount++; if (fcount < 100 && sim->fighters[fcount].spwn==0) { particles[newIndex].tmp = fcount; sim->fighters[fcount].spwn = 1; sim->fighters[fcount].elem = PT_DUST; sim->fighcount++; //STKM_init_legs(&(sim->fighters[sim->fcount]), newIndex); } } if (!sim->elements[particles[newIndex].type].Enabled) particles[newIndex].type = PT_NONE;*/ newIndex++; } } } } goto fin; fail: //Clean up everything returnCode = Corrupt; fin: bson_destroy(&b); if(freeIndices) free(freeIndices); return returnCode; } GameSave::ParseResult GameSave::readPSv(char * data, int dataLength) { unsigned char * d = NULL, * c = (unsigned char *)data; int q,i,j,k,x,y,p=0,*m=NULL, ver, pty, ty, legacy_beta=0, tempGrav = 0; int bx0=0, by0=0, bw, bh, w, h, y0 = 0, x0 = 0; int nf=0, new_format = 0, ttv = 0; int *fp = (int *)malloc(NPART*sizeof(int)); std::vector tempSigns; char tempSignText[255]; sign tempSign("", 0, 0, sign::Left); //Gol data used to read older saves int goltype[NGOL]; int grule[NGOL+1][10]; int golRulesCount; int * golRulesT = LoadGOLRules(golRulesCount); memcpy(grule, golRulesT, sizeof(int) * (golRulesCount*10)); free(golRulesT); int golTypesCount; int * golTypesT = LoadGOLTypes(golTypesCount); memcpy(goltype, golTypesT, sizeof(int) * (golTypesCount)); free(golTypesT); vector elements = GetElements(); //New file header uses PSv, replacing fuC. This is to detect if the client uses a new save format for temperatures //This creates a problem for old clients, that display and "corrupt" error instead of a "newer version" error if (dataLength<16) return Corrupt; if (!(c[2]==0x43 && c[1]==0x75 && c[0]==0x66) && !(c[2]==0x76 && c[1]==0x53 && c[0]==0x50)) return Corrupt; if (c[2]==0x76 && c[1]==0x53 && c[0]==0x50) { new_format = 1; } if (c[4]>SAVE_VERSION) return WrongVersion; ver = c[4]; if (ver<34) { legacyEnable = 1; } else { if (ver>=44) { legacyEnable = c[3]&0x01; paused = (c[3]>>1)&0x01; if (ver>=46) { gravityMode = ((c[3]>>2)&0x03);// | ((c[3]>>2)&0x01); airMode = ((c[3]>>4)&0x07);// | ((c[3]>>4)&0x02) | ((c[3]>>4)&0x01); } if (ver>=49) { gravityEnable = ((c[3]>>7)&0x01); } } else { if (c[3]==1||c[3]==0) { legacyEnable = c[3]; } else { legacy_beta = 1; } } } bw = c[6]; bh = c[7]; if (bx0+bw > XRES/CELL) bx0 = XRES/CELL - bw; if (by0+bh > YRES/CELL) by0 = YRES/CELL - bh; if (bx0 < 0) bx0 = 0; if (by0 < 0) by0 = 0; if (c[5]!=CELL || bx0+bw>XRES/CELL || by0+bh>YRES/CELL) return InvalidDimensions; i = (unsigned)c[8]; i |= ((unsigned)c[9])<<8; i |= ((unsigned)c[10])<<16; i |= ((unsigned)c[11])<<24; d = (unsigned char *)malloc(i); if (!d) return Corrupt; setSize(bw*CELL, bh*CELL); if (BZ2_bzBuffToBuffDecompress((char *)d, (unsigned *)&i, (char *)(c+12), dataLength-12, 0, 0)) return Corrupt; dataLength = i; if (dataLength < bw*bh) return Corrupt; // normalize coordinates x0 = bx0*CELL; y0 = by0*CELL; w = bw *CELL; h = bh *CELL; if (ver<46) { gravityMode = 0; airMode = 0; } m = (int *)calloc(XRES*YRES, sizeof(int)); // load the required air state for (y=by0; y= dataLength) goto corrupt; fanVelX[y][x] = (d[p++]-127.0f)/64.0f; } for (y=by0; y= dataLength) goto corrupt; fanVelY[y][x] = (d[p++]-127.0f)/64.0f; } // load the particle map i = 0; k = 0; pty = p; for (y=y0; y= dataLength) goto corrupt; j=d[p++]; if (j >= PT_NUM) { //TODO: Possibly some server side translation j = PT_DUST;//goto corrupt; } if (j) { memset(particles+k, 0, sizeof(Particle)); particles[k].type = j; if (j == PT_COAL) particles[k].tmp = 50; if (j == PT_FUSE) particles[k].tmp = 50; if (j == PT_PHOT) particles[k].ctype = 0x3fffffff; if (j == PT_SOAP) particles[k].ctype = 0; if (j==PT_BIZR || j==PT_BIZRG || j==PT_BIZRS) particles[k].ctype = 0x47FFFF; particles[k].x = (float)x; particles[k].y = (float)y; m[(x-x0)+(y-y0)*w] = k+1; particlesCount = k++; } } // load particle properties for (j=0; j= dataLength) goto corrupt; if (i < NPART) { particles[i].vx = (d[p++]-127.0f)/16.0f; particles[i].vy = (d[p++]-127.0f)/16.0f; } else p += 2; } } for (j=0; j=44) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { ttv = (d[p++])<<8; ttv |= (d[p++]); particles[i-1].life = ttv; } else { p+=2; } } else { if (p >= dataLength) goto corrupt; if (i <= NPART) particles[i-1].life = d[p++]*4; else p++; } } } if (ver>=44) { for (j=0; j= dataLength) { goto corrupt; } if (i <= NPART) { ttv = (d[p++])<<8; ttv |= (d[p++]); particles[i-1].tmp = ttv; if (ver<53 && !particles[i-1].tmp) for (q = 1; q<=NGOLALT; q++) { if (particles[i-1].type==goltype[q-1] && grule[q][9]==2) particles[i-1].tmp = grule[q][9]-1; } if (ver>=51 && ver<53 && particles[i-1].type==PT_PBCN) { particles[i-1].tmp2 = particles[i-1].tmp; particles[i-1].tmp = 0; } } else { p+=2; } } } } if (ver>=53) { for (j=0; j= dataLength) goto corrupt; if (i <= NPART) particles[i-1].tmp2 = d[p++]; else p++; } } } //Read ALPHA component for (j=0; j=49) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { particles[i-1].dcolour = d[p++]<<24; } else { p++; } } } } //Read RED component for (j=0; j=49) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { particles[i-1].dcolour |= d[p++]<<16; } else { p++; } } } } //Read GREEN component for (j=0; j=49) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { particles[i-1].dcolour |= d[p++]<<8; } else { p++; } } } } //Read BLUE component for (j=0; j=49) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { particles[i-1].dcolour |= d[p++]; } else { p++; } } } } for (j=0; j=34&&legacy_beta==0) { if (p >= dataLength) { goto corrupt; } if (i <= NPART) { if (ver>=42) { if (new_format) { ttv = (d[p++])<<8; ttv |= (d[p++]); if (particles[i-1].type==PT_PUMP) { particles[i-1].temp = ttv + 0.15;//fix PUMP saved at 0, so that it loads at 0. } else { particles[i-1].temp = ttv; } } else { particles[i-1].temp = (d[p++]*((MAX_TEMP+(-MIN_TEMP))/255))+MIN_TEMP; } } else { particles[i-1].temp = ((d[p++]*((O_MAX_TEMP+(-O_MIN_TEMP))/255))+O_MIN_TEMP)+273; } } else { p++; if (new_format) { p++; } } } else { particles[i-1].temp = elements[particles[i-1].type].Temperature; } } } for (j=0; j=43) || (ty==PT_BCLN && ver>=44) || (ty==PT_SPRK && ver>=21) || (ty==PT_LAVA && ver>=34) || (ty==PT_PIPE && ver>=43) || (ty==PT_LIFE && ver>=51) || (ty==PT_PBCN && ver>=52) || (ty==PT_WIRE && ver>=55) || (ty==PT_STOR && ver>=59) || (ty==PT_CONV && ver>=60))) { if (p >= dataLength) goto corrupt; if (i <= NPART) particles[i-1].ctype = d[p++]; else p++; } //TODO: STKM_init_legs // no more particle properties to load, so we can change type here without messing up loading if (i && i<=NPART) { if (particles[i-1].type == PT_SPNG) { if (fabs(particles[i-1].vx)>0.0f || fabs(particles[i-1].vy)>0.0f) particles[i-1].flags |= FLAG_MOVABLE; } if (ver<48 && (ty==OLD_PT_WIND || (ty==PT_BRAY&&particles[i-1].life==0))) { // Replace invisible particles with something sensible and add decoration to hide it x = (int)(particles[i-1].x+0.5f); y = (int)(particles[i-1].y+0.5f); particles[i-1].dcolour = 0xFF000000; particles[i-1].type = PT_DMND; } if(ver<51 && ((ty>=78 && ty<=89) || (ty>=134 && ty<=146 && ty!=141))){ //Replace old GOL particles[i-1].type = PT_LIFE; for (gnum = 0; gnum=10) { particles[i-1].life = 10; particles[i-1].tmp2 = 10; particles[i-1].tmp = 3; } else if(particles[i-1].life<=0) { particles[i-1].life = 0; particles[i-1].tmp2 = 0; particles[i-1].tmp = 0; } else if(particles[i-1].life < 10 && particles[i-1].life > 0) { particles[i-1].tmp = 1; } } else { particles[i-1].tmp2 = particles[i-1].life; } } } } if (p >= dataLength) goto version1; j = d[p++]; for (i=0; i dataLength) goto corrupt; x = d[p++]; x |= ((unsigned)d[p++])<<8; tempSign.x = x+x0; x = d[p++]; x |= ((unsigned)d[p++])<<8; tempSign.y = x+y0; x = d[p++]; tempSign.ju = (sign::Justification)x; x = d[p++]; if (p+x > dataLength) goto corrupt; if(x>254) x = 254; memcpy(tempSignText, d+p, x); tempSignText[x] = 0; tempSign.text = tempSignText; tempSigns.push_back(tempSign); p += x; } for (i = 0; i < tempSigns.size(); i++) { if(i == MAXSIGNS) break; signs.push_back(tempSigns[i]); } version1: if (m) free(m); if (d) free(d); if (fp) free(fp); return OK; corrupt: if (m) free(m); if (d) free(d); if (fp) free(fp); return Corrupt; } char * GameSave::serialiseOPS(int & dataLength) { //Particle *particles = sim->parts; unsigned char *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL, *finalData = NULL, *outputData = NULL; unsigned *partsPosLink = NULL, *partsPosFirstMap = NULL, *partsPosCount = NULL, *partsPosLastMap = NULL; unsigned int partsDataLen, partsPosDataLen, fanDataLen, wallDataLen, finalDataLen, outputDataLen; int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH; int x, y, i, wallDataFound = 0; int posCount, signsCount; bson b; //Get coords in blocks blockX = 0;//orig_x0/CELL; blockY = 0;//orig_y0/CELL; //Snap full coords to block size fullX = blockX*CELL; fullY = blockY*CELL; //Original size + offset of original corner from snapped corner, rounded up by adding CELL-1 blockW = (width-fullX+CELL-1)/CELL; blockH = (height-fullY+CELL-1)/CELL; fullW = blockW*CELL; fullH = blockH*CELL; //Copy fan and wall data wallData = (unsigned char*)malloc(blockW*blockH); wallDataLen = blockW*blockH; fanData = (unsigned char*)malloc((blockW*blockH)*2); fanDataLen = 0; for(x = blockX; x < blockX+blockW; x++) { for(y = blockY; y < blockY+blockH; y++) { wallData[(y-blockY)*blockW+(x-blockX)] = blockMap[y][x]; if(blockMap[y][x] && !wallDataFound) wallDataFound = 1; if(blockMap[y][x]==WL_FAN) { i = (int)(fanVelX[y][x]*64.0f+127.5f); if (i<0) i=0; if (i>255) i=255; fanData[fanDataLen++] = i; i = (int)(fanVelY[y][x]*64.0f+127.5f); if (i<0) i=0; if (i>255) i=255; fanData[fanDataLen++] = i; } } } if(!fanDataLen) { free(fanData); fanData = NULL; } if(!wallDataFound) { free(wallData); wallData = NULL; } //Index positions of all particles, using linked lists //partsPosFirstMap is pmap for the first particle in each position //partsPosLastMap is pmap for the last particle in each position //partsPosCount is the number of particles in each position //partsPosLink contains, for each particle, (i<<8)|1 of the next particle in the same position partsPosFirstMap = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned)); partsPosLastMap = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned)); partsPosCount = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned)); partsPosLink = (unsigned int *)calloc(NPART, sizeof(unsigned)); for(i = 0; i < NPART; i++) { if(particles[i].type) { x = (int)(particles[i].x+0.5f); y = (int)(particles[i].y+0.5f); //Coordinates relative to top left corner of saved area x -= fullX; y -= fullY; if (!partsPosFirstMap[y*fullW + x]) { //First entry in list partsPosFirstMap[y*fullW + x] = (i<<8)|1; partsPosLastMap[y*fullW + x] = (i<<8)|1; } else { //Add to end of list partsPosLink[partsPosLastMap[y*fullW + x]>>8] = (i<<8)|1;//link to current end of list partsPosLastMap[y*fullW + x] = (i<<8)|1;//set as new end of list } partsPosCount[y*fullW + x]++; } } //Store number of particles in each position partsPosData = (unsigned char*)malloc(fullW*fullH*3); partsPosDataLen = 0; for (y=0;y>16; partsPosData[partsPosDataLen++] = (posCount&0x0000FF00)>>8; partsPosData[partsPosDataLen++] = (posCount&0x000000FF); } } //Copy parts data /* Field descriptor format: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | tmp2 | ctype[2] | vy | vx | dcololour | ctype[1] | tmp[2] | tmp[1] | life[2] | life[1] | temp dbl len| life[2] means a second byte (for a 16 bit field) if life[1] is present */ partsData = (unsigned char *)malloc(NPART * (sizeof(Particle)+1)); partsDataLen = 0; for (y=0;y>8; //Type (required) partsData[partsDataLen++] = particles[i].type; //Location of the field descriptor fieldDescLoc = partsDataLen++; partsDataLen++; //Extra Temperature (2nd byte optional, 1st required), 1 to 2 bytes //Store temperature as an offset of 21C(294.15K) or go into a 16byte int and store the whole thing if(fabs(particles[i].temp-294.15f)<127) { tempTemp = (particles[i].temp-294.15f); partsData[partsDataLen++] = tempTemp; } else { fieldDesc |= 1; tempTemp = particles[i].temp; partsData[partsDataLen++] = tempTemp; partsData[partsDataLen++] = tempTemp >> 8; } //Life (optional), 1 to 2 bytes if(particles[i].life) { fieldDesc |= 1 << 1; partsData[partsDataLen++] = particles[i].life; if(particles[i].life > 255) { fieldDesc |= 1 << 2; partsData[partsDataLen++] = particles[i].life >> 8; } } //Tmp (optional), 1 to 2 bytes if(particles[i].tmp) { fieldDesc |= 1 << 3; partsData[partsDataLen++] = particles[i].tmp; if(particles[i].tmp > 255) { fieldDesc |= 1 << 4; partsData[partsDataLen++] = particles[i].tmp >> 8; } } //Ctype (optional), 1 or 4 bytes if(particles[i].ctype) { fieldDesc |= 1 << 5; partsData[partsDataLen++] = particles[i].ctype; if(particles[i].ctype > 255) { fieldDesc |= 1 << 9; partsData[partsDataLen++] = (particles[i].ctype&0xFF000000)>>24; partsData[partsDataLen++] = (particles[i].ctype&0x00FF0000)>>16; partsData[partsDataLen++] = (particles[i].ctype&0x0000FF00)>>8; } } //Dcolour (optional), 4 bytes if(particles[i].dcolour && (particles[i].dcolour & 0xFF000000)) { fieldDesc |= 1 << 6; partsData[partsDataLen++] = (particles[i].dcolour&0xFF000000)>>24; partsData[partsDataLen++] = (particles[i].dcolour&0x00FF0000)>>16; partsData[partsDataLen++] = (particles[i].dcolour&0x0000FF00)>>8; partsData[partsDataLen++] = (particles[i].dcolour&0x000000FF); } //VX (optional), 1 byte if(fabs(particles[i].vx) > 0.001f) { fieldDesc |= 1 << 7; vTemp = (int)(particles[i].vx*16.0f+127.5f); if (vTemp<0) vTemp=0; if (vTemp>255) vTemp=255; partsData[partsDataLen++] = vTemp; } //VY (optional), 1 byte if(fabs(particles[i].vy) > 0.001f) { fieldDesc |= 1 << 8; vTemp = (int)(particles[i].vy*16.0f+127.5f); if (vTemp<0) vTemp=0; if (vTemp>255) vTemp=255; partsData[partsDataLen++] = vTemp; } //Tmp2 (optional), 1 byte if(particles[i].tmp2) { fieldDesc |= 1 << 10; partsData[partsDataLen++] = particles[i].tmp2; } //Write the field descriptor; partsData[fieldDescLoc] = fieldDesc; partsData[fieldDescLoc+1] = fieldDesc>>8; //Get the pmap entry for the next particle in the same position i = partsPosLink[i]; } } } if(!partsDataLen) { free(partsData); partsData = NULL; } bson_init(&b); bson_append_bool(&b, "waterEEnabled", waterEEnabled); bson_append_bool(&b, "legacyEnable", legacyEnable); bson_append_bool(&b, "gravityEnable", gravityEnable); bson_append_bool(&b, "paused", paused); bson_append_int(&b, "gravityMode", gravityMode); bson_append_int(&b, "airMode", airMode); //bson_append_int(&b, "leftSelectedElement", sl); //bson_append_int(&b, "rightSelectedElement", sr); //bson_append_int(&b, "activeMenu", active_menu); if(partsData) bson_append_binary(&b, "parts", BSON_BIN_USER, (const char *)partsData, partsDataLen); if(partsPosData) bson_append_binary(&b, "partsPos", BSON_BIN_USER, (const char *)partsPosData, partsPosDataLen); if(wallData) bson_append_binary(&b, "wallMap", BSON_BIN_USER, (const char *)wallData, wallDataLen); if(fanData) bson_append_binary(&b, "fanMap", BSON_BIN_USER, (const char *)fanData, fanDataLen); signsCount = 0; for(i = 0; i < signs.size(); i++) { if(signs[i].text.length() && signs[i].x>=0 && signs[i].x<=fullW && signs[i].y>=0 && signs[i].y<=fullH) { signsCount++; } } if(signsCount) { bson_append_start_array(&b, "signs"); for(i = 0; i < signs.size(); i++) { if(signs[i].text.length() && signs[i].x>=0 && signs[i].x<=fullW && signs[i].y>=0 && signs[i].y<=fullH) { bson_append_start_object(&b, "sign"); bson_append_string(&b, "text", signs[i].text.c_str()); bson_append_int(&b, "justification", signs[i].ju); bson_append_int(&b, "x", signs[i].x); bson_append_int(&b, "y", signs[i].y); bson_append_finish_object(&b); } } } bson_append_finish_array(&b); bson_finish(&b); bson_print(&b); finalData = (unsigned char *)bson_data(&b); finalDataLen = bson_size(&b); outputDataLen = finalDataLen*2+12; outputData = (unsigned char *)malloc(outputDataLen); outputData[0] = 'O'; outputData[1] = 'P'; outputData[2] = 'S'; outputData[3] = '1'; outputData[4] = SAVE_VERSION; outputData[5] = CELL; outputData[6] = blockW; outputData[7] = blockH; outputData[8] = finalDataLen; outputData[9] = finalDataLen >> 8; outputData[10] = finalDataLen >> 16; outputData[11] = finalDataLen >> 24; if (BZ2_bzBuffToBuffCompress((char*)(outputData+12), &outputDataLen, (char*)finalData, bson_size(&b), 9, 0, 0) != BZ_OK) { puts("Save Error\n"); free(outputData); dataLength = 0; outputData = NULL; goto fin; } printf("compressed data: %d\n", outputDataLen); dataLength = outputDataLen + 12; fin: bson_destroy(&b); if(partsData) free(partsData); if(wallData) free(wallData); if(fanData) free(fanData); return (char*)outputData; } GameSave::~GameSave() { if(width && height) { /*if(particleMap) { for(int y = 0; y < height; y++) delete[] particleMap[y]; delete[] particleMap; }*/ if(particles) { delete[] particles; } if(blockMap) { delete[] blockMapPtr; delete[] blockMap; } if(fanVelX) { delete[] fanVelXPtr; delete[] fanVelX; } if(fanVelY) { delete[] fanVelYPtr; delete[] fanVelY; } } }