arbitrary gravity code cleanup

Was working on modernizing the code in my mod, copied all the changes here too
This commit is contained in:
jacob1 2019-08-05 00:05:54 -04:00
parent ee2a765758
commit e280fea031
6 changed files with 354 additions and 383 deletions

View File

@ -174,7 +174,7 @@ GameModel::~GameModel()
Client::Ref().SetPref("Renderer.DebugMode", ren->debugLines); //These two should always be equivalent, even though they are different things
Client::Ref().SetPref("Simulation.EdgeMode", edgeMode);
Client::Ref().SetPref("Simulation.NewtonianGravity", sim->grav->ngrav_enable);
Client::Ref().SetPref("Simulation.NewtonianGravity", sim->grav->IsEnabled());
Client::Ref().SetPref("Simulation.AmbientHeat", sim->aheat_enable);
Client::Ref().SetPref("Simulation.PrettyPowder", sim->pretty_powder);
@ -719,11 +719,11 @@ void GameModel::SetSaveFile(SaveFile * newSave, bool invertIncludePressure)
sim->legacy_enable = saveData->legacyEnable;
sim->water_equal_test = saveData->waterEEnabled;
sim->aheat_enable = saveData->aheatEnable;
if(saveData->gravityEnable && !sim->grav->ngrav_enable)
if(saveData->gravityEnable && !sim->grav->IsEnabled())
{
sim->grav->start_grav_async();
}
else if(!saveData->gravityEnable && sim->grav->ngrav_enable)
else if(!saveData->gravityEnable && sim->grav->IsEnabled())
{
sim->grav->stop_grav_async();
}
@ -995,7 +995,7 @@ void GameModel::SetNewtonianGravity(bool newtonainGravity)
bool GameModel::GetNewtonianGrvity()
{
return sim->grav->ngrav_enable;
return sim->grav->IsEnabled();
}
void GameModel::ShowGravityGrid(bool showGrid)

View File

@ -46,7 +46,7 @@ void OptionsModel::SetAmbientHeatSimulation(bool state)
bool OptionsModel::GetNewtonianGravity()
{
return sim->grav->ngrav_enable?true:false;
return sim->grav->IsEnabled();
}
void OptionsModel::SetNewtonianGravity(bool state)

View File

@ -1226,7 +1226,7 @@ int luatpt_gravity(lua_State* l)
int acount = lua_gettop(l);
if (acount == 0)
{
lua_pushinteger(l, luacon_sim->grav->ngrav_enable);
lua_pushinteger(l, luacon_sim->grav->IsEnabled() ? 1 : 0);
return 1;
}
int gravstate = luaL_checkint(l, 1);

View File

@ -1,241 +1,83 @@
#include "Gravity.h"
#include "SimulationData.h"
#include <cmath>
#include <iostream>
#include <sys/types.h>
#include "CoordStack.h"
#include "Misc.h"
#include "Simulation.h"
#include "SimulationData.h"
void Gravity::bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh)
Gravity::Gravity()
{
int y, x, fxceil, fyceil;
float fx, fy, fyc, fxc;
double intp;
float tr, tl, br, bl;
//Bilinear interpolation for upscaling
for (y=0; y<rh; y++)
for (x=0; x<rw; x++)
{
fx = ((float)x)*((float)sw)/((float)rw);
fy = ((float)y)*((float)sh)/((float)rh);
fxc = modf(fx, &intp);
fyc = modf(fy, &intp);
fxceil = (int)ceil(fx);
fyceil = (int)ceil(fy);
if (fxceil>=sw) fxceil = sw-1;
if (fyceil>=sh) fyceil = sh-1;
tr = src[sw*(int)floor(fy)+fxceil];
tl = src[sw*(int)floor(fy)+(int)floor(fx)];
br = src[sw*fyceil+fxceil];
bl = src[sw*fyceil+(int)floor(fx)];
dst[rw*y+x] = ((tl*(1.0f-fxc))+(tr*(fxc)))*(1.0f-fyc) + ((bl*(1.0f-fxc))+(br*(fxc)))*(fyc);
}
// Allocate full size Gravmaps
unsigned int size = (XRES / CELL) * (YRES / CELL);
th_ogravmap = new float[size];
th_gravmap = new float[size];
th_gravy = new float[size];
th_gravx = new float[size];
th_gravp = new float[size];
gravmap = new float[size];
gravy = new float[size];
gravx = new float[size];
gravp = new float[size];
gravmask = new unsigned[size];
}
bool ignoreNextResult = false;
void Gravity::Clear()
{
std::fill(gravy, gravy+((XRES/CELL)*(YRES/CELL)), 0.0f);
std::fill(gravx, gravx+((XRES/CELL)*(YRES/CELL)), 0.0f);
std::fill(gravp, gravp+((XRES/CELL)*(YRES/CELL)), 0.0f);
std::fill(gravmap, gravmap+((XRES/CELL)*(YRES/CELL)), 0.0f);
std::fill(gravmask, gravmask+((XRES/CELL)*(YRES/CELL)), 0xFFFFFFFF);
ignoreNextResult = true;
}
void Gravity::gravity_init()
{
ngrav_enable = 0;
//Allocate full size Gravmaps
th_ogravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravy = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravx = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravp = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravy = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravx = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravp = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravmask = (unsigned int *)calloc((XRES/CELL)*(YRES/CELL), sizeof(unsigned));
obmap = (unsigned char (*)[XRES/CELL])calloc((XRES/CELL)*(YRES/CELL), sizeof(unsigned char));
}
void Gravity::gravity_cleanup()
Gravity::~Gravity()
{
stop_grav_async();
#ifdef GRAVFFT
grav_fft_cleanup();
#endif
//Free gravity info
free(th_ogravmap);
free(th_gravmap);
free(th_gravy);
free(th_gravx);
free(th_gravp);
free(gravmap);
free(gravy);
free(gravx);
free(gravp);
free(gravmask);
free(obmap);
delete[] th_ogravmap;
delete[] th_gravmap;
delete[] th_gravy;
delete[] th_gravx;
delete[] th_gravp;
delete[] gravmap;
delete[] gravy;
delete[] gravx;
delete[] gravp;
delete[] gravmask;
}
void Gravity::gravity_update_async()
void Gravity::Clear()
{
int result;
if (ngrav_enable)
{
bool signal_grav = false;
int size = (XRES / CELL) * (YRES / CELL);
std::fill(gravy, gravy + size, 0.0f);
std::fill(gravx, gravx + size, 0.0f);
std::fill(gravp, gravp + size, 0.0f);
std::fill(gravmap, gravmap + size, 0.0f);
std::fill(gravmask, gravmask + size, 0xFFFFFFFF);
{
std::unique_lock<std::mutex> l(gravmutex, std::defer_lock);
if (l.try_lock())
{
result = grav_ready;
if (result) //Did the gravity thread finish?
{
float *tmpf;
if (th_gravchanged && !ignoreNextResult)
{
#if !defined(GRAVFFT) && defined(GRAV_DIFF)
memcpy(gravy, th_gravy, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravx, th_gravx, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravp, th_gravp, (XRES/CELL)*(YRES/CELL)*sizeof(float));
#else
tmpf = gravy;
gravy = th_gravy;
th_gravy = tmpf;
tmpf = gravx;
gravx = th_gravx;
th_gravx = tmpf;
tmpf = gravp;
gravp = th_gravp;
th_gravp = tmpf;
#endif
}
ignoreNextResult = false;
tmpf = gravmap;
gravmap = th_gravmap;
th_gravmap = tmpf;
grav_ready = 0; //Tell the other thread that we're ready for it to continue
signal_grav = true;
}
}
}
if (signal_grav)
{
gravcv.notify_one();
}
//Apply the gravity mask
membwand(gravy, gravmask, (XRES/CELL)*(YRES/CELL)*sizeof(float), (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
membwand(gravx, gravmask, (XRES/CELL)*(YRES/CELL)*sizeof(float), (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
memset(gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
}
void Gravity::update_grav_async()
{
int done = 0;
int thread_done = 0;
memset(th_ogravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
//memset(th_gravy, 0, XRES*YRES*sizeof(float));
//memset(th_gravx, 0, XRES*YRES*sizeof(float));
//memset(th_gravp, 0, XRES*YRES*sizeof(float));
#ifdef GRAVFFT
if (!grav_fft_status)
grav_fft_init();
#endif
std::unique_lock<std::mutex> l(gravmutex);
while (!thread_done)
{
if (!done)
{
// run gravity update
update_grav();
done = 1;
grav_ready = 1;
thread_done = gravthread_done;
} else {
// wait for main thread
gravcv.wait(l);
done = grav_ready;
thread_done = gravthread_done;
}
}
}
void Gravity::start_grav_async()
{
if (ngrav_enable) //If it's already enabled, restart it
stop_grav_async();
gravthread_done = 0;
grav_ready = 0;
gravthread = std::thread([this]() { update_grav_async(); }); //Start asynchronous gravity simulation
ngrav_enable = 1;
memset(gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
void Gravity::stop_grav_async()
{
if (ngrav_enable)
{
{
std::lock_guard<std::mutex> g(gravmutex);
gravthread_done = 1;
}
gravcv.notify_one();
gravthread.join();
ngrav_enable = 0;
}
//Clear the grav velocities
memset(gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
ignoreNextResult = true;
}
#ifdef GRAVFFT
void Gravity::grav_fft_init()
{
int xblock2 = XRES/CELL*2;
int yblock2 = YRES/CELL*2;
int x, y, fft_tsize = (xblock2/2+1)*yblock2;
int fft_tsize = (xblock2/2+1)*yblock2;
float distance, scaleFactor;
fftwf_plan plan_ptgravx, plan_ptgravy;
if (grav_fft_status) return;
//use fftw malloc function to ensure arrays are aligned, to get better performance
th_ptgravx = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravy = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravxt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_ptgravyt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravmapbig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravmapbigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravxbig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravybig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravxbigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravybigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_ptgravx = reinterpret_cast<float*>(fftwf_malloc(xblock2 * yblock2 * sizeof(float)));
th_ptgravy = reinterpret_cast<float*>(fftwf_malloc(xblock2 * yblock2 * sizeof(float)));
th_ptgravxt = reinterpret_cast<fftwf_complex*>(fftwf_malloc(fft_tsize * sizeof(fftwf_complex)));
th_ptgravyt = reinterpret_cast<fftwf_complex*>(fftwf_malloc(fft_tsize * sizeof(fftwf_complex)));
th_gravmapbig = reinterpret_cast<float*>(fftwf_malloc(xblock2 * yblock2 * sizeof(float)));
th_gravmapbigt = reinterpret_cast<fftwf_complex*>(fftwf_malloc(fft_tsize * sizeof(fftwf_complex)));
th_gravxbig = reinterpret_cast<float*>(fftwf_malloc(xblock2 * yblock2 * sizeof(float)));
th_gravybig = reinterpret_cast<float*>(fftwf_malloc(xblock2 * yblock2 * sizeof(float)));
th_gravxbigt = reinterpret_cast<fftwf_complex*>(fftwf_malloc(fft_tsize * sizeof(fftwf_complex)));
th_gravybigt = reinterpret_cast<fftwf_complex*>(fftwf_malloc(fft_tsize * sizeof(fftwf_complex)));
//select best algorithm, could use FFTW_PATIENT or FFTW_EXHAUSTIVE but that increases the time taken to plan, and I don't see much increase in execution speed
plan_ptgravx = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravx, th_ptgravxt, FFTW_MEASURE);
@ -247,18 +89,19 @@ void Gravity::grav_fft_init()
//(XRES/CELL)*(YRES/CELL)*4 is size of data array, scaling needed because FFTW calculates an unnormalized DFT
scaleFactor = -M_GRAV/((XRES/CELL)*(YRES/CELL)*4);
//calculate velocity map caused by a point mass
for (y=0; y<yblock2; y++)
for (int y = 0; y < yblock2; y++)
{
for (x=0; x<xblock2; x++)
for (int x = 0; x < xblock2; x++)
{
if (x==XRES/CELL && y==YRES/CELL) continue;
if (x == XRES / CELL && y == YRES / CELL)
continue;
distance = sqrtf(pow(x-(XRES/CELL), 2.0f) + pow(y-(YRES/CELL), 2.0f));
th_ptgravx[y*xblock2+x] = scaleFactor*(x-(XRES/CELL)) / pow(distance, 3.0f);
th_ptgravy[y*xblock2+x] = scaleFactor*(y-(YRES/CELL)) / pow(distance, 3.0f);
th_ptgravx[y * xblock2 + x] = scaleFactor * (x - (XRES / CELL)) / pow(distance, 3);
th_ptgravy[y * xblock2 + x] = scaleFactor * (y - (YRES / CELL)) / pow(distance, 3);
}
}
th_ptgravx[yblock2*xblock2/2+xblock2/2] = 0.0f;
th_ptgravy[yblock2*xblock2/2+xblock2/2] = 0.0f;
th_ptgravx[yblock2 * xblock2 / 2 + xblock2 / 2] = 0.0f;
th_ptgravy[yblock2 * xblock2 / 2 + xblock2 / 2] = 0.0f;
//transform point mass velocity maps
fftwf_execute(plan_ptgravx);
@ -269,7 +112,7 @@ void Gravity::grav_fft_init()
fftwf_free(th_ptgravy);
//clear padded gravmap
memset(th_gravmapbig,0,xblock2*yblock2*sizeof(float));
memset(th_gravmapbig, 0, xblock2 * yblock2 * sizeof(float));
grav_fft_status = true;
}
@ -290,34 +133,144 @@ void Gravity::grav_fft_cleanup()
fftwf_destroy_plan(plan_gravy_inverse);
grav_fft_status = false;
}
#endif
void Gravity::update_grav()
void Gravity::gravity_update_async()
{
int x, y, changed = 0;
int xblock2 = XRES/CELL*2, yblock2 = YRES/CELL*2;
int i, fft_tsize = (xblock2/2+1)*yblock2;
float mr, mc, pr, pc, gr, gc;
for (y=0; y<YRES/CELL; y++)
int result;
if (!enabled)
return;
bool signal_grav = false;
{
if(changed)
break;
for (x=0; x<XRES/CELL; x++)
std::unique_lock<std::mutex> l(gravmutex, std::defer_lock);
if (l.try_lock())
{
if(th_ogravmap[y*(XRES/CELL)+x] != th_gravmap[y*(XRES/CELL)+x] || bmap[y][x] != obmap[y][x]){
changed = 1;
break;
result = grav_ready;
if (result) //Did the gravity thread finish?
{
if (th_gravchanged && !ignoreNextResult)
{
#if !defined(GRAVFFT) && defined(GRAV_DIFF)
memcpy(gravy, th_gravy, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravx, th_gravx, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravp, th_gravp, (XRES/CELL)*(YRES/CELL)*sizeof(float));
#else
std::swap(gravy, th_gravy);
std::swap(gravx, th_gravx);
std::swap(gravp, th_gravp);
#endif
}
ignoreNextResult = false;
std::swap(gravmap, th_gravmap);
grav_ready = 0; //Tell the other thread that we're ready for it to continue
signal_grav = true;
}
}
}
if(changed)
if (signal_grav)
{
gravcv.notify_one();
}
unsigned int size = (XRES / CELL) * (YRES / CELL);
membwand(gravy, gravmask, size * sizeof(float), size * sizeof(unsigned));
membwand(gravx, gravmask, size * sizeof(float), size * sizeof(unsigned));
std::fill(&gravmap[0], &gravmap[size], 0);
}
void Gravity::update_grav_async()
{
int done = 0;
int thread_done = 0;
unsigned int size = (XRES / CELL) * (YRES / CELL);
std::fill(&th_ogravmap[0], &th_ogravmap[size], 0);
std::fill(&th_gravmap[0], &th_gravmap[size], 0);
std::fill(&th_gravy[0], &th_gravy[size], 0);
std::fill(&th_gravx[0], &th_gravx[size], 0);
std::fill(&th_gravp[0], &th_gravp[size], 0);
#ifdef GRAVFFT
if (!grav_fft_status)
grav_fft_init();
#endif
std::unique_lock<std::mutex> l(gravmutex);
while (!thread_done)
{
if (!done)
{
// run gravity update
update_grav();
done = 1;
grav_ready = 1;
thread_done = gravthread_done;
}
else
{
// wait for main thread
gravcv.wait(l);
done = grav_ready;
thread_done = gravthread_done;
}
}
}
void Gravity::start_grav_async()
{
if (enabled) //If it's already enabled, restart it
stop_grav_async();
gravthread_done = 0;
grav_ready = 0;
gravthread = std::thread([this]() { update_grav_async(); }); //Start asynchronous gravity simulation
enabled = true;
unsigned int size = (XRES / CELL) * (YRES / CELL);
std::fill(&gravy[0], &gravy[size], 0);
std::fill(&gravx[0], &gravx[size], 0);
std::fill(&gravp[0], &gravp[size], 0);
std::fill(&gravmap[0], &gravmap[size], 0);
}
void Gravity::stop_grav_async()
{
if (enabled)
{
{
std::lock_guard<std::mutex> g(gravmutex);
gravthread_done = 1;
}
gravcv.notify_one();
gravthread.join();
enabled = false;
}
// Clear the grav velocities
unsigned int size = (XRES / CELL) * (YRES / CELL);
std::fill(&gravy[0], &gravy[size], 0);
std::fill(&gravx[0], &gravx[size], 0);
std::fill(&gravp[0], &gravp[size], 0);
std::fill(&gravmap[0], &gravmap[size], 0);
}
#ifdef GRAVFFT
void Gravity::update_grav()
{
int xblock2 = XRES/CELL*2, yblock2 = YRES/CELL*2;
int fft_tsize = (xblock2/2+1)*yblock2;
float mr, mc, pr, pc, gr, gc;
if (memcmp(th_ogravmap, th_gravmap, sizeof(float)*(XRES/CELL)*(YRES/CELL)) != 0)
{
th_gravchanged = 1;
membwand(th_gravmap, gravmask, (XRES/CELL)*(YRES/CELL)*sizeof(float), (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
//copy gravmap into padded gravmap array
for (y=0; y<YRES/CELL; y++)
for (int y = 0; y < YRES / CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
for (int x = 0; x < XRES / CELL; x++)
{
th_gravmapbig[(y+YRES/CELL)*xblock2+XRES/CELL+x] = th_gravmap[y*(XRES/CELL)+x];
}
@ -325,7 +278,7 @@ void Gravity::update_grav()
//transform gravmap
fftwf_execute(plan_gravmap);
//do convolution (multiply the complex numbers)
for (i=0; i<fft_tsize; i++)
for (int i = 0; i < fft_tsize; i++)
{
mr = th_gravmapbigt[i][0];
mc = th_gravmapbigt[i][1];
@ -345,9 +298,9 @@ void Gravity::update_grav()
//inverse transform, and copy from padded arrays into normal velocity maps
fftwf_execute(plan_gravx_inverse);
fftwf_execute(plan_gravy_inverse);
for (y=0; y<YRES/CELL; y++)
for (int y = 0; y < YRES / CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
for (int x = 0; x < XRES / CELL; x++)
{
th_gravx[y*(XRES/CELL)+x] = th_gravxbig[y*xblock2+x];
th_gravy[y*(XRES/CELL)+x] = th_gravybig[y*xblock2+x];
@ -359,8 +312,9 @@ void Gravity::update_grav()
{
th_gravchanged = 0;
}
memcpy(th_ogravmap, th_gravmap, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(obmap, bmap, (XRES/CELL)*(YRES/CELL)*sizeof(unsigned char));
// Copy th_ogravmap into th_gravmap (doesn't matter what th_ogravmap is afterwards)
std::swap(th_gravmap, th_ogravmap);
}
#else
@ -427,121 +381,147 @@ fin:
void Gravity::grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout)
bool Gravity::grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL])
{
if(x < 0 || x >= XRES/CELL || y < 0 || y >= YRES/CELL)
return;
if(x == 0 || y ==0 || y == (YRES/CELL)-1 || x == (XRES/CELL)-1)
*shapeout = 1;
int x1 = x, x2 = x;
while (x1 >= 1)
int x1, x2;
bool ret = false;
try
{
if(checkmap[y][x1-1] || bmap[y][x1-1]==WL_GRAV)
break;
x1--;
CoordStack cs;
cs.push(x, y);
do
{
cs.pop(x, y);
x1 = x2 = x;
while (x1 >= 0)
{
if (x1 == 0)
{
ret = true;
break;
}
else if (checkmap[y][x1-1] || bmap[y][x1-1] == WL_GRAV)
break;
x1--;
}
while (x2 <= XRES/CELL-1)
{
if (x2 == XRES/CELL-1)
{
ret = true;
break;
}
else if (checkmap[y][x2+1] || bmap[y][x2+1] == WL_GRAV)
break;
x2++;
}
for (x = x1; x <= x2; x++)
{
shape[y][x] = 1;
checkmap[y][x] = 1;
}
if (y == 0)
{
for (x = x1; x <= x2; x++)
if (bmap[y][x] != WL_GRAV)
ret = true;
}
else if (y >= 1)
{
for (x = x1; x <= x2; x++)
if (!checkmap[y-1][x] && bmap[y-1][x] != WL_GRAV)
{
if (y-1 == 0)
ret = true;
cs.push(x, y-1);
}
}
if (y < YRES/CELL-1)
for (x=x1; x<=x2; x++)
if (!checkmap[y+1][x] && bmap[y+1][x] != WL_GRAV)
{
if (y+1 == YRES/CELL-1)
ret = true;
cs.push(x, y+1);
}
} while (cs.getSize()>0);
}
while (x2 < (XRES/CELL)-1)
catch (std::exception& e)
{
if(checkmap[y][x2+1] || bmap[y][x2+1]==WL_GRAV)
break;
x2++;
std::cerr << e.what() << std::endl;
ret = false;
}
// fill span
for (x = x1; x <= x2; x++)
checkmap[y][x] = shape[y][x] = 1;
if(y >= 1)
for(x = x1; x <= x2; x++)
if(!checkmap[y-1][x] && bmap[y-1][x]!=WL_GRAV)
grav_mask_r(x, y-1, checkmap, shape, shapeout);
if(y < (YRES/CELL)-1)
for(x = x1; x <= x2; x++)
if(!checkmap[y+1][x] && bmap[y+1][x]!=WL_GRAV)
grav_mask_r(x, y+1, checkmap, shape, shapeout);
return;
return ret;
}
void Gravity::mask_free(mask_el *c_mask_el){
if(c_mask_el==NULL)
void Gravity::mask_free(mask_el *c_mask_el)
{
if (c_mask_el == nullptr)
return;
if(c_mask_el->next!=NULL)
mask_free((mask_el*)c_mask_el->next);
free(c_mask_el->shape);
free(c_mask_el);
delete[] c_mask_el->next;
delete[] c_mask_el->shape;
delete[] c_mask_el;
}
void Gravity::gravity_mask()
{
char checkmap[YRES/CELL][XRES/CELL];
int x = 0, y = 0;
unsigned maskvalue;
mask_el *t_mask_el = NULL;
mask_el *c_mask_el = NULL;
if(!gravmask)
mask_el *t_mask_el = nullptr;
mask_el *c_mask_el = nullptr;
if (!gravmask)
return;
memset(checkmap, 0, sizeof(checkmap));
for(x = 0; x < XRES/CELL; x++)
for (int x = 0; x < XRES / CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
for(int y = 0; y < YRES / CELL; y++)
{
if(bmap[y][x]!=WL_GRAV && checkmap[y][x] == 0)
if (bmap[y][x] != WL_GRAV && checkmap[y][x] == 0)
{
//Create a new shape
if(t_mask_el==NULL){
t_mask_el = (mask_el *)malloc(sizeof(mask_el));
t_mask_el->shape = (char *)malloc((XRES/CELL)*(YRES/CELL));
memset(t_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
// Create a new shape
if (t_mask_el == nullptr)
{
t_mask_el = new mask_el[sizeof(mask_el)];
t_mask_el->shape = new char[(XRES / CELL) * (YRES / CELL)];
std::fill(&t_mask_el->shape[0], &t_mask_el->shape[(XRES / CELL) * (YRES / CELL)], 0);
t_mask_el->shapeout = 0;
t_mask_el->next = NULL;
t_mask_el->next = nullptr;
c_mask_el = t_mask_el;
} else {
c_mask_el->next = (mask_el *)malloc(sizeof(mask_el));
c_mask_el = (mask_el *)c_mask_el->next;
c_mask_el->shape = (char *)malloc((XRES/CELL)*(YRES/CELL));
memset(c_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
c_mask_el->shapeout = 0;
c_mask_el->next = NULL;
}
//Fill the shape
grav_mask_r(x, y, (char (*)[XRES/CELL])checkmap, (char (*)[XRES/CELL])c_mask_el->shape, (char*)&c_mask_el->shapeout);
else
{
c_mask_el->next = new mask_el[sizeof(mask_el)];
c_mask_el = c_mask_el->next;
c_mask_el->shape = new char[(XRES / CELL) * (YRES / CELL)];
std::fill(&c_mask_el->shape[0], &c_mask_el->shape[(XRES / CELL) * (YRES / CELL)], 0);
c_mask_el->shapeout = 0;
c_mask_el->next = nullptr;
}
// Fill the shape
if (grav_mask_r(x, y, checkmap, reinterpret_cast<char(*)[XRES/CELL]>(c_mask_el->shape)))
c_mask_el->shapeout = 1;
}
}
}
c_mask_el = t_mask_el;
memset(gravmask, 0, (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
while(c_mask_el!=NULL)
std::fill(&gravmask[0], &gravmask[(XRES / CELL) * (YRES / CELL)], 0);
while (c_mask_el != nullptr)
{
char *cshape = c_mask_el->shape;
for(x = 0; x < XRES/CELL; x++)
for (int x = 0; x < XRES / CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
for (int y = 0; y < YRES / CELL; y++)
{
if(cshape[y*(XRES/CELL)+x]){
if(c_mask_el->shapeout)
if (cshape[y * (XRES / CELL) + x])
{
if (c_mask_el->shapeout)
maskvalue = 0xFFFFFFFF;
else
maskvalue = 0x00000000;
gravmask[y*(XRES/CELL)+x] = maskvalue;
gravmask[y * (XRES / CELL) + x] = maskvalue;
}
}
}
c_mask_el = (mask_el*)c_mask_el->next;
c_mask_el = c_mask_el->next;
}
mask_free(t_mask_el);
}
#ifdef GRAVFFT
Gravity::Gravity():
grav_fft_status(false)
{
gravity_init();
}
#else
Gravity::Gravity()
{
gravity_init();
}
#endif
Gravity::~Gravity()
{
gravity_cleanup();
}

View File

@ -12,90 +12,81 @@
class Simulation;
struct mask_el {
char *shape;
char shapeout;
void *next;
};
typedef struct mask_el mask_el;
class Gravity
{
private:
float *th_ogravmap;
float *th_gravmap;
float *th_gravx;
float *th_gravy;
float *th_gravp;
bool enabled = false;
int th_gravchanged;
// Maps to be processed by the gravity thread
float *th_ogravmap = nullptr;
float *th_gravmap = nullptr;
float *th_gravx = nullptr;
float *th_gravy = nullptr;
float *th_gravp = nullptr;
int th_gravchanged = 0;
std::thread gravthread;
std::mutex gravmutex;
std::condition_variable gravcv;
int grav_ready;
int gravthread_done;
int grav_ready = 0;
int gravthread_done = 0;
bool ignoreNextResult = false;
#ifdef GRAVFFT
bool grav_fft_status;
float *th_ptgravx, *th_ptgravy, *th_gravmapbig, *th_gravxbig, *th_gravybig;
bool grav_fft_status = false;
float *th_ptgravx = nullptr;
float *th_ptgravy = nullptr;
float *th_gravmapbig = nullptr;
float *th_gravxbig = nullptr;
float *th_gravybig = nullptr;
fftwf_complex *th_ptgravxt, *th_ptgravyt, *th_gravmapbigt, *th_gravxbigt, *th_gravybigt;
fftwf_plan plan_gravmap, plan_gravx_inverse, plan_gravy_inverse;
#endif
//Simulation * sim;
public:
unsigned *gravmask;
float *gravmap;
float *gravp;
float *gravy;
float *gravx;
unsigned char (*bmap)[XRES/CELL];
unsigned char (*obmap)[XRES/CELL];
int ngrav_enable;
void grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout);
struct mask_el {
char *shape;
char shapeout;
mask_el *next;
};
using mask_el = struct mask_el;
bool grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL]);
void mask_free(mask_el *c_mask_el);
void update_grav();
void update_grav_async();
#ifdef GRAVFFT
void grav_fft_init();
void grav_fft_cleanup();
#endif
public:
//Maps to be used by the main thread
float *gravmap = nullptr;
float *gravp = nullptr;
float *gravy = nullptr;
float *gravx = nullptr;
unsigned *gravmask = nullptr;
unsigned char (*bmap)[XRES/CELL];
bool IsEnabled() { return enabled; }
void Clear();
void gravity_init();
void gravity_cleanup();
void gravity_update_async();
void update_grav_async();
void start_grav_async();
void stop_grav_async();
void update_grav();
void gravity_mask();
void bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh);
#ifdef GRAVFFT
void grav_fft_init();
void grav_fft_cleanup();
#endif
Gravity();
~Gravity();
};
/*extern int ngrav_enable; //Newtonian gravity
extern int gravwl_timeout;
extern int gravityMode;*/
/*float *gravmap;//Maps to be used by the main thread
float *gravp;
float *gravy;
float *gravx;
unsigned *gravmask;
float *th_ogravmap;// Maps to be processed by the gravity thread
float *th_gravmap;
float *th_gravx;
float *th_gravy;
float *th_gravp;*/
#endif

View File

@ -492,7 +492,7 @@ void Simulation::SaveSimOptions(GameSave * gameSave)
gameSave->edgeMode = edgeMode;
gameSave->legacyEnable = legacy_enable;
gameSave->waterEEnabled = water_equal_test;
gameSave->gravityEnable = grav->ngrav_enable;
gameSave->gravityEnable = grav->IsEnabled();
gameSave->aheatEnable = aheat_enable;
}
@ -538,7 +538,7 @@ void Simulation::Restore(const Snapshot & snap)
RecalcFreeParticles(false);
std::copy(snap.PortalParticles.begin(), snap.PortalParticles.end(), &portalp[0][0][0]);
std::copy(snap.WirelessData.begin(), snap.WirelessData.end(), &wireless[0][0]);
if (grav->ngrav_enable)
if (grav->IsEnabled())
{
grav->Clear();
std::copy(snap.GravVelocityX.begin(), snap.GravVelocityX.end(), gravx);
@ -702,7 +702,7 @@ SimulationSample Simulation::GetSample(int x, int y)
sample.AirVelocityX = vx[y/CELL][x/CELL];
sample.AirVelocityY = vy[y/CELL][x/CELL];
if(grav->ngrav_enable)
if(grav->IsEnabled())
{
sample.Gravity = gravp[(y/CELL)*(XRES/CELL)+(x/CELL)];
sample.GravityVelocityX = gravx[(y/CELL)*(XRES/CELL)+(x/CELL)];
@ -4702,7 +4702,7 @@ killed:
goto movedone;
}
}
if (elements[t].Falldown>1 && !grav->ngrav_enable && gravityMode==0 && parts[i].vy>fabsf(parts[i].vx))
if (elements[t].Falldown>1 && !grav->IsEnabled() && gravityMode==0 && parts[i].vy>fabsf(parts[i].vx))
{
s = 0;
// stagnant is true if FLAG_STAGNANT was set for this particle in previous frame
@ -5209,7 +5209,7 @@ void Simulation::BeforeSim()
if(aheat_enable)
air->update_airh();
if(grav->ngrav_enable)
if(grav->IsEnabled())
{
grav->gravity_update_async();