OPS save format from TPT

This commit is contained in:
Simon Robertshaw 2012-05-22 16:01:39 +01:00
parent 7e49d63d28
commit cc0efb13f0
2 changed files with 860 additions and 5 deletions

View File

@ -9,6 +9,7 @@
#include <cmath>
#include "Air.h"
#include "SaveLoader.h"
#include "bson/BSON.h"
//!TODO: enum for LoadSave return
@ -39,7 +40,7 @@ int SaveLoader::Load(unsigned char * data, int dataLength, Simulation * sim, boo
}
if(saveData[0] == 'O' && saveData[1] == 'P' && saveData[2] == 'S')
{
return OPSLoad(data, dataLength, sim);
return OPSLoad(data, dataLength, sim, replace, x, y);
}
else if((saveData[0]==0x66 && saveData[1]==0x75 && saveData[2]==0x43) || (saveData[0]==0x50 && saveData[1]==0x53 && saveData[2]==0x76))
{
@ -62,14 +63,868 @@ int SaveLoader::OPSInfo(unsigned char * data, int dataLength, int & width, int &
}
int SaveLoader::OPSLoad(unsigned char * data, int dataLength, Simulation * sim)
int SaveLoader::OPSLoad(unsigned char * data, int dataLength, Simulation * sim, bool replace, int x0, int y0)
{
return 2;
Particle *partsptr = sim->parts;
unsigned char * inputData = data, *bsonData = NULL, *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL;
unsigned int inputDataLen = dataLength, bsonDataLen = 0, partsDataLen, partsPosDataLen, fanDataLen, wallDataLen;
int i, freeIndicesCount, x, y, returnCode = 0, j;
int *freeIndices = NULL;
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
bson b;
bson_iterator iter;
//Block sizes
blockX = x0/CELL;
blockY = y0/CELL;
blockW = inputData[6];
blockH = inputData[7];
//Full size, normalised
fullX = blockX*CELL;
fullY = blockY*CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
//From newer version
if(inputData[4] > SAVE_VERSION)
{
fprintf(stderr, "Save from newer version\n");
return 2;
}
//Incompatible cell size
if(inputData[5] > CELL)
{
fprintf(stderr, "Cell size mismatch\n");
return 1;
}
//Too large/off screen
if(blockX+blockW > XRES/CELL || blockY+blockH > YRES/CELL)
{
fprintf(stderr, "Save too large\n");
return 1;
}
bsonDataLen = ((unsigned)inputData[8]);
bsonDataLen |= ((unsigned)inputData[9]) << 8;
bsonDataLen |= ((unsigned)inputData[10]) << 16;
bsonDataLen |= ((unsigned)inputData[11]) << 24;
bsonData = (unsigned char*)malloc(bsonDataLen+1);
if(!bsonData)
{
fprintf(stderr, "Internal error while parsing save: could not allocate buffer\n");
return 3;
}
//Make sure bsonData is null terminated, since all string functions need null terminated strings
//(bson_iterator_key returns a pointer into bsonData, which is then used with strcmp)
bsonData[bsonDataLen] = 0;
if (BZ2_bzBuffToBuffDecompress((char*)bsonData, &bsonDataLen, (char*)(inputData+12), inputDataLen-12, 0, 0))
{
fprintf(stderr, "Unable to decompress\n");
return 1;
}
if(replace)
{
//Remove everything
sim->clear_sim();
}
bson_init_data(&b, (char*)bsonData);
bson_iterator_init(&iter, &b);
std::vector<sign> tempSigns;
while(bson_iterator_next(&iter))
{
if(strcmp(bson_iterator_key(&iter), "signs")==0)
{
if(bson_iterator_type(&iter)==BSON_ARRAY)
{
bson_iterator subiter;
bson_iterator_subiterator(&iter, &subiter);
while(bson_iterator_next(&subiter))
{
if(strcmp(bson_iterator_key(&subiter), "sign")==0)
{
if(bson_iterator_type(&subiter)==BSON_OBJECT)
{
bson_iterator signiter;
bson_iterator_subiterator(&subiter, &signiter);
sign tempSign("", 0, 0, sign::Left);
while(bson_iterator_next(&signiter))
{
if(strcmp(bson_iterator_key(&signiter), "text")==0 && bson_iterator_type(&signiter)==BSON_STRING)
{
tempSign.text = bson_iterator_string(&signiter);
clean_text((char*)tempSign.text.c_str(), 158-14);
}
else if(strcmp(bson_iterator_key(&signiter), "justification")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
tempSign.ju = (sign::Justification)bson_iterator_int(&signiter);
}
else if(strcmp(bson_iterator_key(&signiter), "x")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
tempSign.x = bson_iterator_int(&signiter)+fullX;
}
else if(strcmp(bson_iterator_key(&signiter), "y")==0 && bson_iterator_type(&signiter)==BSON_INT)
{
tempSign.y = bson_iterator_int(&signiter)+fullY;
}
else
{
fprintf(stderr, "Unknown sign property %s\n", bson_iterator_key(&signiter));
}
}
tempSigns.push_back(tempSign);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&subiter));
}
}
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "parts")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsData = (unsigned char*)bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
if(strcmp(bson_iterator_key(&iter), "partsPos")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (partsPosDataLen = bson_iterator_bin_len(&iter)) > 0)
{
partsPosData = (unsigned char*)bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of particle position data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "wallMap")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (wallDataLen = bson_iterator_bin_len(&iter)) > 0)
{
wallData = (unsigned char*)bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of wall data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "fanMap")==0)
{
if(bson_iterator_type(&iter)==BSON_BINDATA && ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER && (fanDataLen = bson_iterator_bin_len(&iter)) > 0)
{
fanData = (unsigned char*)bson_iterator_bin_data(&iter);
}
else
{
fprintf(stderr, "Invalid datatype of fan data: %d[%d] %d[%d] %d[%d]\n", bson_iterator_type(&iter), bson_iterator_type(&iter)==BSON_BINDATA, (unsigned char)bson_iterator_bin_type(&iter), ((unsigned char)bson_iterator_bin_type(&iter))==BSON_BIN_USER, bson_iterator_bin_len(&iter), bson_iterator_bin_len(&iter)>0);
}
}
else if(strcmp(bson_iterator_key(&iter), "legacyEnable")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
sim->legacy_enable = bson_iterator_bool(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "gravityEnable")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
bool tempGrav = sim->ngrav_enable;
tempGrav = bson_iterator_bool(&iter);
#ifndef RENDERER
//Change the gravity state
if(sim->ngrav_enable != tempGrav)
{
if(tempGrav)
sim->grav->start_grav_async();
else
sim->grav->stop_grav_async();
}
#endif
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "waterEEnabled")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
sim->water_equal_test = bson_iterator_bool(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "paused")==0 && !sim->sys_pause)
{
if(bson_iterator_type(&iter)==BSON_BOOL)
{
sim->sys_pause = bson_iterator_bool(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "gravityMode")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT)
{
sim->gravityMode = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
else if(strcmp(bson_iterator_key(&iter), "airMode")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT)
{
sim->air->airMode = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}
/*else if((strcmp(bson_iterator_key(&iter), "leftSelectedElement")==0 || strcmp(bson_iterator_key(&iter), "rightSelectedElement")) && replace)
{
if(bson_iterator_type(&iter)==BSON_INT && bson_iterator_int(&iter) > 0 && bson_iterator_int(&iter) < PT_NUM)
{
if(bson_iterator_key(&iter)[0] == 'l')
{
sl = bson_iterator_int(&iter);
}
else
{
sr = bson_iterator_int(&iter);
}
}
else
{
fprintf(stderr, "Wrong type for %s\n", bson_iterator_key(&iter));
}
}*/
/*else if(strcmp(bson_iterator_key(&iter), "activeMenu")==0 && replace)
{
if(bson_iterator_type(&iter)==BSON_INT && bson_iterator_int(&iter) > 0 && bson_iterator_int(&iter) < SC_TOTAL && msections[bson_iterator_int(&iter)].doshow)
{
active_menu = bson_iterator_int(&iter);
}
else
{
fprintf(stderr, "Wrong value for %s\n", bson_iterator_key(&iter));
}
}*/
}
//Read wall and fan data
if(wallData)
{
j = 0;
if(blockW * blockH > wallDataLen)
{
fprintf(stderr, "Not enough wall data\n");
goto fail;
}
for(x = 0; x < blockW; x++)
{
for(y = 0; y < blockH; y++)
{
if (wallData[y*blockW+x])
sim->bmap[blockY+y][blockX+x] = wallData[y*blockW+x];
if (wallData[y*blockW+x] == WL_FAN && fanData)
{
if(j+1 >= fanDataLen)
{
fprintf(stderr, "Not enough fan data\n");
}
sim->fvx[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
sim->fvy[blockY+y][blockX+x] = (fanData[j++]-127.0f)/64.0f;
}
}
}
}
//Read particle data
if(partsData && partsPosData)
{
int newIndex = 0, fieldDescriptor, tempTemp;
int posCount, posTotal, partsPosDataIndex = 0;
int saved_x, saved_y;
int freeIndicesIndex = 0;
if(fullW * fullH * 3 > partsPosDataLen)
{
fprintf(stderr, "Not enough particle position data\n");
goto fail;
}
sim->parts_lastActiveIndex = NPART-1;
freeIndicesCount = 0;
freeIndices = (int*)calloc(sizeof(int), NPART);
for (i = 0; i<NPART; i++)
{
//Ensure ALL parts (even photons) are in the pmap so we can overwrite, keep a track of indices we can use
if (partsptr[i].type)
{
x = (int)(partsptr[i].x+0.5f);
y = (int)(partsptr[i].y+0.5f);
sim->pmap[y][x] = (i<<8)|1;
}
else
freeIndices[freeIndicesCount++] = i;
}
i = 0;
for (saved_y=0; saved_y<fullH; saved_y++)
{
for (saved_x=0; saved_x<fullW; saved_x++)
{
//Read total number of particles at this position
posTotal = 0;
posTotal |= partsPosData[partsPosDataIndex++]<<16;
posTotal |= partsPosData[partsPosDataIndex++]<<8;
posTotal |= partsPosData[partsPosDataIndex++];
//Put the next posTotal particles at this position
for (posCount=0; posCount<posTotal; posCount++)
{
//i+3 because we have 4 bytes of required fields (type (1), descriptor (2), temp (1))
if (i+3 >= partsDataLen)
goto fail;
x = saved_x + fullX;
y = saved_y + fullY;
fieldDescriptor = partsData[i+1];
fieldDescriptor |= partsData[i+2] << 8;
if(x >= XRES || x < 0 || y >= YRES || y < 0)
{
fprintf(stderr, "Out of range [%d]: %d %d, [%d, %d], [%d, %d]\n", i, x, y, (unsigned)partsData[i+1], (unsigned)partsData[i+2], (unsigned)partsData[i+3], (unsigned)partsData[i+4]);
goto fail;
}
if(partsData[i] >= PT_NUM)
partsData[i] = PT_DMND; //Replace all invalid elements with diamond
if(sim->pmap[y][x])
{
//Replace existing particle or allocated block
newIndex = sim->pmap[y][x]>>8;
}
else if(freeIndicesIndex<freeIndicesCount)
{
//Create new particle
newIndex = freeIndices[freeIndicesIndex++];
}
else
{
//Nowhere to put new particle, tpt is sad :(
break;
}
if(newIndex < 0 || newIndex >= NPART)
goto fail;
//Clear the particle, ready for our new properties
memset(&(partsptr[newIndex]), 0, sizeof(Particle));
//Required fields
partsptr[newIndex].type = partsData[i];
partsptr[newIndex].x = x;
partsptr[newIndex].y = y;
i+=3;
//Read temp
if(fieldDescriptor & 0x01)
{
//Full 16bit int
tempTemp = partsData[i++];
tempTemp |= (((unsigned)partsData[i++]) << 8);
partsptr[newIndex].temp = tempTemp;
}
else
{
//1 Byte room temp offset
tempTemp = (char)partsData[i++];
partsptr[newIndex].temp = tempTemp+294.15f;
}
//Read life
if(fieldDescriptor & 0x02)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].life = partsData[i++];
//Read 2nd byte
if(fieldDescriptor & 0x04)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].life |= (((unsigned)partsData[i++]) << 8);
}
}
//Read tmp
if(fieldDescriptor & 0x08)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp = partsData[i++];
//Read 2nd byte
if(fieldDescriptor & 0x10)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp |= (((unsigned)partsData[i++]) << 8);
}
}
//Read ctype
if(fieldDescriptor & 0x20)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].ctype = partsData[i++];
//Read additional bytes
if(fieldDescriptor & 0x200)
{
if(i+2 >= partsDataLen) goto fail;
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 24);
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 16);
partsptr[newIndex].ctype |= (((unsigned)partsData[i++]) << 8);
}
}
//Read dcolour
if(fieldDescriptor & 0x40)
{
if(i+3 >= partsDataLen) goto fail;
partsptr[newIndex].dcolour = (((unsigned)partsData[i++]) << 24);
partsptr[newIndex].dcolour |= (((unsigned)partsData[i++]) << 16);
partsptr[newIndex].dcolour |= (((unsigned)partsData[i++]) << 8);
partsptr[newIndex].dcolour |= ((unsigned)partsData[i++]);
}
//Read vx
if(fieldDescriptor & 0x80)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].vx = (partsData[i++]-127.0f)/16.0f;
}
//Read vy
if(fieldDescriptor & 0x100)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].vy = (partsData[i++]-127.0f)/16.0f;
}
//Read tmp2
if(fieldDescriptor & 0x400)
{
if(i >= partsDataLen) goto fail;
partsptr[newIndex].tmp2 = partsData[i++];
}
if ((sim->player.spwn == 1 && partsptr[newIndex].type==PT_STKM) || (sim->player2.spwn == 1 && partsptr[newIndex].type==PT_STKM2))
{
partsptr[newIndex].type = PT_NONE;
}
else if (partsptr[newIndex].type == PT_STKM)
{
//STKM_init_legs(&player, newIndex);
sim->player.spwn = 1;
sim->player.elem = PT_DUST;
}
else if (partsptr[newIndex].type == PT_STKM2)
{
//STKM_init_legs(&player2, newIndex);
sim->player2.spwn = 1;
sim->player2.elem = PT_DUST;
}
else if (partsptr[newIndex].type == PT_FIGH)
{
//TODO: 100 should be replaced with a macro
unsigned char fcount = 0;
while (fcount < 100 && fcount < (sim->fighcount+1) && sim->fighters[fcount].spwn==1) fcount++;
if (fcount < 100 && sim->fighters[fcount].spwn==0)
{
partsptr[newIndex].tmp = fcount;
sim->fighters[fcount].spwn = 1;
sim->fighters[fcount].elem = PT_DUST;
sim->fighcount++;
//STKM_init_legs(&(sim->fighters[sim->fcount]), newIndex);
}
}
if (!sim->elements[partsptr[newIndex].type].Enabled)
partsptr[newIndex].type = PT_NONE;
}
}
}
}
goto fin;
fail:
//Clean up everything
returnCode = 1;
fin:
bson_destroy(&b);
if(freeIndices)
free(freeIndices);
return returnCode;
}
unsigned char * SaveLoader::OPSBuild(int & dataLength, Simulation * sim, int orig_x0, int orig_y0, int orig_w, int orig_h)
{
return 0;
Particle *partsptr = sim->parts;
unsigned char *partsData = NULL, *partsPosData = NULL, *fanData = NULL, *wallData = NULL, *finalData = NULL, *outputData = NULL;
unsigned *partsPosLink = NULL, *partsPosFirstMap = NULL, *partsPosCount = NULL, *partsPosLastMap = NULL;
unsigned int partsDataLen, partsPosDataLen, fanDataLen, wallDataLen, finalDataLen, outputDataLen;
int blockX, blockY, blockW, blockH, fullX, fullY, fullW, fullH;
int x, y, i, wallDataFound = 0;
int posCount, signsCount;
bson b;
//Get coords in blocks
blockX = orig_x0/CELL;
blockY = orig_y0/CELL;
//Snap full coords to block size
fullX = blockX*CELL;
fullY = blockY*CELL;
//Original size + offset of original corner from snapped corner, rounded up by adding CELL-1
blockW = (orig_w+orig_x0-fullX+CELL-1)/CELL;
blockH = (orig_h+orig_y0-fullY+CELL-1)/CELL;
fullW = blockW*CELL;
fullH = blockH*CELL;
//Copy fan and wall data
wallData = (unsigned char*)malloc(blockW*blockH);
wallDataLen = blockW*blockH;
fanData = (unsigned char*)malloc((blockW*blockH)*2);
fanDataLen = 0;
for(x = blockX; x < blockX+blockW; x++)
{
for(y = blockY; y < blockY+blockH; y++)
{
wallData[(y-blockY)*blockW+(x-blockX)] = sim->bmap[y][x];
if(sim->bmap[y][x] && !wallDataFound)
wallDataFound = 1;
if(sim->bmap[y][x]==WL_FAN)
{
i = (int)(sim->fvx[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
i = (int)(sim->fvy[y][x]*64.0f+127.5f);
if (i<0) i=0;
if (i>255) i=255;
fanData[fanDataLen++] = i;
}
}
}
if(!fanDataLen)
{
free(fanData);
fanData = NULL;
}
if(!wallDataFound)
{
free(wallData);
wallData = NULL;
}
//Index positions of all particles, using linked lists
//partsPosFirstMap is pmap for the first particle in each position
//partsPosLastMap is pmap for the last particle in each position
//partsPosCount is the number of particles in each position
//partsPosLink contains, for each particle, (i<<8)|1 of the next particle in the same position
partsPosFirstMap = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned));
partsPosLastMap = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned));
partsPosCount = (unsigned int *)calloc(fullW*fullH, sizeof(unsigned));
partsPosLink = (unsigned int *)calloc(NPART, sizeof(unsigned));
for(i = 0; i < NPART; i++)
{
if(partsptr[i].type)
{
x = (int)(partsptr[i].x+0.5f);
y = (int)(partsptr[i].y+0.5f);
if (x>=orig_x0 && x<orig_x0+orig_w && y>=orig_y0 && y<orig_y0+orig_h)
{
//Coordinates relative to top left corner of saved area
x -= fullX;
y -= fullY;
if (!partsPosFirstMap[y*fullW + x])
{
//First entry in list
partsPosFirstMap[y*fullW + x] = (i<<8)|1;
partsPosLastMap[y*fullW + x] = (i<<8)|1;
}
else
{
//Add to end of list
partsPosLink[partsPosLastMap[y*fullW + x]>>8] = (i<<8)|1;//link to current end of list
partsPosLastMap[y*fullW + x] = (i<<8)|1;//set as new end of list
}
partsPosCount[y*fullW + x]++;
}
}
}
//Store number of particles in each position
partsPosData = (unsigned char*)malloc(fullW*fullH*3);
partsPosDataLen = 0;
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
posCount = partsPosCount[y*fullW + x];
partsPosData[partsPosDataLen++] = (posCount&0x00FF0000)>>16;
partsPosData[partsPosDataLen++] = (posCount&0x0000FF00)>>8;
partsPosData[partsPosDataLen++] = (posCount&0x000000FF);
}
}
//Copy parts data
/* Field descriptor format:
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| tmp2 | ctype[2] | vy | vx | dcololour | ctype[1] | tmp[2] | tmp[1] | life[2] | life[1] | temp dbl len|
life[2] means a second byte (for a 16 bit field) if life[1] is present
*/
partsData = (unsigned char *)malloc(NPART * (sizeof(Particle)+1));
partsDataLen = 0;
for (y=0;y<fullH;y++)
{
for (x=0;x<fullW;x++)
{
//Find the first particle in this position
i = partsPosFirstMap[y*fullW + x];
//Loop while there is a pmap entry
while (i)
{
unsigned short fieldDesc = 0;
int fieldDescLoc = 0, tempTemp, vTemp;
//Turn pmap entry into a partsptr index
i = i>>8;
//Type (required)
partsData[partsDataLen++] = partsptr[i].type;
//Location of the field descriptor
fieldDescLoc = partsDataLen++;
partsDataLen++;
//Extra Temperature (2nd byte optional, 1st required), 1 to 2 bytes
//Store temperature as an offset of 21C(294.15K) or go into a 16byte int and store the whole thing
if(fabs(partsptr[i].temp-294.15f)<127)
{
tempTemp = (partsptr[i].temp-294.15f);
partsData[partsDataLen++] = tempTemp;
}
else
{
fieldDesc |= 1;
tempTemp = partsptr[i].temp;
partsData[partsDataLen++] = tempTemp;
partsData[partsDataLen++] = tempTemp >> 8;
}
//Life (optional), 1 to 2 bytes
if(partsptr[i].life)
{
fieldDesc |= 1 << 1;
partsData[partsDataLen++] = partsptr[i].life;
if(partsptr[i].life > 255)
{
fieldDesc |= 1 << 2;
partsData[partsDataLen++] = partsptr[i].life >> 8;
}
}
//Tmp (optional), 1 to 2 bytes
if(partsptr[i].tmp)
{
fieldDesc |= 1 << 3;
partsData[partsDataLen++] = partsptr[i].tmp;
if(partsptr[i].tmp > 255)
{
fieldDesc |= 1 << 4;
partsData[partsDataLen++] = partsptr[i].tmp >> 8;
}
}
//Ctype (optional), 1 or 4 bytes
if(partsptr[i].ctype)
{
fieldDesc |= 1 << 5;
partsData[partsDataLen++] = partsptr[i].ctype;
if(partsptr[i].ctype > 255)
{
fieldDesc |= 1 << 9;
partsData[partsDataLen++] = (partsptr[i].ctype&0xFF000000)>>24;
partsData[partsDataLen++] = (partsptr[i].ctype&0x00FF0000)>>16;
partsData[partsDataLen++] = (partsptr[i].ctype&0x0000FF00)>>8;
}
}
//Dcolour (optional), 4 bytes
if(partsptr[i].dcolour && (partsptr[i].dcolour & 0xFF000000))
{
fieldDesc |= 1 << 6;
partsData[partsDataLen++] = (partsptr[i].dcolour&0xFF000000)>>24;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x00FF0000)>>16;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x0000FF00)>>8;
partsData[partsDataLen++] = (partsptr[i].dcolour&0x000000FF);
}
//VX (optional), 1 byte
if(fabs(partsptr[i].vx) > 0.001f)
{
fieldDesc |= 1 << 7;
vTemp = (int)(partsptr[i].vx*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//VY (optional), 1 byte
if(fabs(partsptr[i].vy) > 0.001f)
{
fieldDesc |= 1 << 8;
vTemp = (int)(partsptr[i].vy*16.0f+127.5f);
if (vTemp<0) vTemp=0;
if (vTemp>255) vTemp=255;
partsData[partsDataLen++] = vTemp;
}
//Tmp2 (optional), 1 byte
if(partsptr[i].tmp2)
{
fieldDesc |= 1 << 10;
partsData[partsDataLen++] = partsptr[i].tmp2;
}
//Write the field descriptor;
partsData[fieldDescLoc] = fieldDesc;
partsData[fieldDescLoc+1] = fieldDesc>>8;
//Get the pmap entry for the next particle in the same position
i = partsPosLink[i];
}
}
}
if(!partsDataLen)
{
free(partsData);
partsData = NULL;
}
bson_init(&b);
bson_append_bool(&b, "waterEEnabled", sim->water_equal_test);
bson_append_bool(&b, "legacyEnable", sim->legacy_enable);
bson_append_bool(&b, "gravityEnable", sim->ngrav_enable);
bson_append_bool(&b, "paused", sim->sys_pause);
bson_append_int(&b, "gravityMode", sim->gravityMode);
bson_append_int(&b, "airMode", sim->air->airMode);
//bson_append_int(&b, "leftSelectedElement", sl);
//bson_append_int(&b, "rightSelectedElement", sr);
//bson_append_int(&b, "activeMenu", active_menu);
if(partsData)
bson_append_binary(&b, "parts", BSON_BIN_USER, (const char *)partsData, partsDataLen);
if(partsPosData)
bson_append_binary(&b, "partsPos", BSON_BIN_USER, (const char *)partsPosData, partsPosDataLen);
if(wallData)
bson_append_binary(&b, "wallMap", BSON_BIN_USER, (const char *)wallData, wallDataLen);
if(fanData)
bson_append_binary(&b, "fanMap", BSON_BIN_USER, (const char *)fanData, fanDataLen);
signsCount = 0;
for(i = 0; i < sim->signs.size(); i++)
{
if(sim->signs[i].text.length() && sim->signs[i].x>=fullX && sim->signs[i].x<=fullX+fullW && sim->signs[i].y>=fullY && sim->signs[i].y<=fullY+fullH)
{
signsCount++;
}
}
if(signsCount)
{
bson_append_start_array(&b, "signs");
for(i = 0; i < sim->signs.size(); i++)
{
if(sim->signs[i].text.length() && sim->signs[i].x>=fullX && sim->signs[i].x<=fullX+fullW && sim->signs[i].y>=fullY && sim->signs[i].y<=fullY+fullH)
{
bson_append_start_object(&b, "sign");
bson_append_string(&b, "text", sim->signs[i].text.c_str());
bson_append_int(&b, "justification", sim->signs[i].ju);
bson_append_int(&b, "x", sim->signs[i].x-fullX);
bson_append_int(&b, "y", sim->signs[i].y-fullY);
bson_append_finish_object(&b);
}
}
}
bson_append_finish_array(&b);
bson_finish(&b);
bson_print(&b);
finalData = (unsigned char *)bson_data(&b);
finalDataLen = bson_size(&b);
outputDataLen = finalDataLen*2+12;
outputData = (unsigned char *)malloc(outputDataLen);
outputData[0] = 'O';
outputData[1] = 'P';
outputData[2] = 'S';
outputData[3] = '1';
outputData[4] = SAVE_VERSION;
outputData[5] = CELL;
outputData[6] = blockW;
outputData[7] = blockH;
outputData[8] = finalDataLen;
outputData[9] = finalDataLen >> 8;
outputData[10] = finalDataLen >> 16;
outputData[11] = finalDataLen >> 24;
if (BZ2_bzBuffToBuffCompress((char*)(outputData+12), &outputDataLen, (char*)finalData, bson_size(&b), 9, 0, 0) != BZ_OK)
{
puts("Save Error\n");
free(outputData);
dataLength = 0;
outputData = NULL;
goto fin;
}
printf("compressed data: %d\n", outputDataLen);
dataLength = outputDataLen + 12;
fin:
bson_destroy(&b);
if(partsData)
free(partsData);
if(wallData)
free(wallData);
if(fanData)
free(fanData);
return outputData;
}
int SaveLoader::PSVInfo(unsigned char * data, int dataLength, int & width, int & height)

View File

@ -17,7 +17,7 @@ public:
static unsigned char * Build(int & dataLength, Simulation * sim, int orig_x0, int orig_y0, int orig_w, int orig_h);
private:
static int OPSInfo(unsigned char * data, int dataLength, int & width, int & height);
static int OPSLoad(unsigned char * data, int dataLength, Simulation * sim);
static int OPSLoad(unsigned char * data, int dataLength, Simulation * sim, bool replace, int x, int y);
static unsigned char * OPSBuild(int & dataLength, Simulation * sim, int orig_x0, int orig_y0, int orig_w, int orig_h);
static int PSVInfo(unsigned char * data, int dataLength, int & width, int & height);
static int PSVLoad(unsigned char * data, int dataLength, Simulation * sim, bool replace, int x, int y);