Move Newtonian gravity into a new file

This commit is contained in:
jacksonmj 2011-12-10 23:23:33 +08:00 committed by Simon Robertshaw
parent 20dd54f36e
commit 934d1da66e
12 changed files with 545 additions and 503 deletions

View File

@ -2,24 +2,6 @@
#define AIR_H
#include "defines.h"
extern float gravmap[YRES/CELL][XRES/CELL]; //Maps to be used by the main thread
extern float gravx[YRES/CELL][XRES/CELL];
extern float gravy[YRES/CELL][XRES/CELL];
extern float gravp[YRES/CELL][XRES/CELL];
extern float *gravpf;
extern float *gravxf;
extern float *gravyf;
extern unsigned gravmask[YRES/CELL][XRES/CELL];
extern float th_ogravmap[YRES/CELL][XRES/CELL]; // Maps to be processed by the gravity thread
extern float th_gravmap[YRES/CELL][XRES/CELL];
extern float th_gravx[YRES/CELL][XRES/CELL];
extern float th_gravy[YRES/CELL][XRES/CELL];
extern float *th_gravpf;
extern float *th_gravxf;
extern float *th_gravyf;
extern float th_gravp[YRES/CELL][XRES/CELL];
extern float vx[YRES/CELL][XRES/CELL], ovx[YRES/CELL][XRES/CELL];
extern float vy[YRES/CELL][XRES/CELL], ovy[YRES/CELL][XRES/CELL];
extern float pv[YRES/CELL][XRES/CELL], opv[YRES/CELL][XRES/CELL];
@ -39,13 +21,6 @@ void make_kernel(void);
void update_airh(void);
void update_grav(void);
#ifdef GRAVFFT
void grav_fft_init();
void grav_fft_cleanup();
#endif
void update_air(void);
#endif

View File

@ -149,7 +149,6 @@ int GRAV_G2;
int GRAV_B2;
extern int legacy_enable;
extern int ngrav_enable; //Newtonian gravity
extern int sound_enable;
extern int kiosk_enable;
extern int aheat_enable;
@ -251,7 +250,5 @@ void clear_sim(void);
void del_stamp(int d);
void sdl_seticon(void);
void play_sound(char *file);
void start_grav_async(void);
void stop_grav_async(void);
int set_scale(int scale, int kiosk);
#endif

View File

@ -3,6 +3,7 @@
// This header should be included by all files in src/elements/
#include "powder.h"
#include "gravity.h"
#include "misc.h"
#include "math.h"
#include "powdergraphics.h"

44
includes/gravity.h Normal file
View File

@ -0,0 +1,44 @@
#ifndef GRAVITY_H
#define GRAVITY_H
#include "defines.h"
extern int ngrav_enable; //Newtonian gravity
extern int gravwl_timeout;
extern int gravityMode;
extern float gravmap[YRES/CELL][XRES/CELL]; //Maps to be used by the main thread
extern float gravx[YRES/CELL][XRES/CELL];
extern float gravy[YRES/CELL][XRES/CELL];
extern float gravp[YRES/CELL][XRES/CELL];
extern float *gravpf;
extern float *gravxf;
extern float *gravyf;
extern unsigned gravmask[YRES/CELL][XRES/CELL];
extern float th_ogravmap[YRES/CELL][XRES/CELL]; // Maps to be processed by the gravity thread
extern float th_gravmap[YRES/CELL][XRES/CELL];
extern float th_gravx[YRES/CELL][XRES/CELL];
extern float th_gravy[YRES/CELL][XRES/CELL];
extern float *th_gravpf;
extern float *th_gravxf;
extern float *th_gravyf;
extern float th_gravp[YRES/CELL][XRES/CELL];
void gravity_init();
void gravity_cleanup();
void gravity_update_async();
void start_grav_async();
void stop_grav_async();
void update_grav();
void gravity_mask();
void bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh);
#ifdef GRAVFFT
void grav_fft_init();
void grav_fft_cleanup();
#endif
#endif

View File

@ -1051,15 +1051,12 @@ extern int portal_ry[8];
extern int wire_placed;
extern int gravwl_timeout;
extern playerst player;
extern playerst player2;
extern playerst fighters[256];
extern unsigned char fighcount;
extern int gravityMode;
extern int airMode;
extern particle *parts;
@ -1137,6 +1134,4 @@ void orbitalparts_get(int block1, int block2, int resblock1[], int resblock2[]);
void orbitalparts_set(int *block1, int *block2, int resblock1[], int resblock2[]);
void gravity_mask();
#endif

261
src/air.c
View File

@ -2,31 +2,10 @@
#include <air.h>
#include <powder.h>
#include <defines.h>
#ifdef GRAVFFT
#include <fftw3.h>
#endif
#include "gravity.h"
float kernel[9];
float gravmap[YRES/CELL][XRES/CELL]; //Maps to be used by the main thread
float gravx[YRES/CELL][XRES/CELL];
float gravy[YRES/CELL][XRES/CELL];
float gravp[YRES/CELL][XRES/CELL];
float *gravpf;
float *gravyf;
float *gravxf;
unsigned gravmask[YRES/CELL][XRES/CELL];
float th_ogravmap[YRES/CELL][XRES/CELL]; // Maps to be processed by the gravity thread
float th_gravmap[YRES/CELL][XRES/CELL];
float th_gravx[YRES/CELL][XRES/CELL];
float th_gravy[YRES/CELL][XRES/CELL];
float th_gravp[YRES/CELL][XRES/CELL];
float *th_gravpf;
float *th_gravyf;
float *th_gravxf;
float vx[YRES/CELL][XRES/CELL], ovx[YRES/CELL][XRES/CELL];
float vy[YRES/CELL][XRES/CELL], ovy[YRES/CELL][XRES/CELL];
float pv[YRES/CELL][XRES/CELL], opv[YRES/CELL][XRES/CELL];
@ -133,244 +112,6 @@ void update_airh(void)
}
memcpy(hv, ohv, sizeof(hv));
}
void bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh)
{
int y, x, fxceil, fyceil;
float fx, fy, fyc, fxc;
double intp;
float tr, tl, br, bl;
//Bilinear interpolation for upscaling
for (y=0; y<rh; y++)
for (x=0; x<rw; x++)
{
fx = ((float)x)*((float)sw)/((float)rw);
fy = ((float)y)*((float)sh)/((float)rh);
fxc = modf(fx, &intp);
fyc = modf(fy, &intp);
fxceil = (int)ceil(fx);
fyceil = (int)ceil(fy);
if (fxceil>=sw) fxceil = sw-1;
if (fyceil>=sh) fyceil = sh-1;
tr = src[sw*(int)floor(fy)+fxceil];
tl = src[sw*(int)floor(fy)+(int)floor(fx)];
br = src[sw*fyceil+fxceil];
bl = src[sw*fyceil+(int)floor(fx)];
dst[rw*y+x] = ((tl*(1.0f-fxc))+(tr*(fxc)))*(1.0f-fyc) + ((bl*(1.0f-fxc))+(br*(fxc)))*(fyc);
}
}
#ifdef GRAVFFT
int grav_fft_status = 0;
float *th_ptgravx, *th_ptgravy, *th_gravmapbig, *th_gravxbig, *th_gravybig;
fftwf_complex *th_ptgravxt, *th_ptgravyt, *th_gravmapbigt, *th_gravxbigt, *th_gravybigt;
fftwf_plan plan_gravmap, plan_gravx_inverse, plan_gravy_inverse;
void grav_fft_init()
{
int xblock2 = XRES/CELL*2;
int yblock2 = YRES/CELL*2;
int x, y, fft_tsize = (xblock2/2+1)*yblock2;
float distance, scaleFactor;
fftwf_plan plan_ptgravx, plan_ptgravy;
if (grav_fft_status) return;
//use fftw malloc function to ensure arrays are aligned, to get better performance
th_ptgravx = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravy = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravxt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_ptgravyt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravmapbig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravmapbigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravxbig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravybig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravxbigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravybigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
//select best algorithm, could use FFTW_PATIENT or FFTW_EXHAUSTIVE but that increases the time taken to plan, and I don't see much increase in execution speed
plan_ptgravx = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravx, th_ptgravxt, FFTW_MEASURE);
plan_ptgravy = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravy, th_ptgravyt, FFTW_MEASURE);
plan_gravmap = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_gravmapbig, th_gravmapbigt, FFTW_MEASURE);
plan_gravx_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravxbigt, th_gravxbig, FFTW_MEASURE);
plan_gravy_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravybigt, th_gravybig, FFTW_MEASURE);
//(XRES/CELL)*(YRES/CELL)*4 is size of data array, scaling needed because FFTW calculates an unnormalized DFT
scaleFactor = -M_GRAV/((XRES/CELL)*(YRES/CELL)*4);
//calculate velocity map caused by a point mass
for (y=0; y<yblock2; y++)
{
for (x=0; x<xblock2; x++)
{
if (x==XRES/CELL && y==YRES/CELL) continue;
distance = sqrtf(pow(x-(XRES/CELL), 2) + pow(y-(YRES/CELL), 2));
th_ptgravx[y*xblock2+x] = scaleFactor*(x-(XRES/CELL)) / pow(distance, 3);
th_ptgravy[y*xblock2+x] = scaleFactor*(y-(YRES/CELL)) / pow(distance, 3);
}
}
th_ptgravx[yblock2*xblock2/2+xblock2/2] = 0.0f;
th_ptgravy[yblock2*xblock2/2+xblock2/2] = 0.0f;
//transform point mass velocity maps
fftwf_execute(plan_ptgravx);
fftwf_execute(plan_ptgravy);
fftwf_destroy_plan(plan_ptgravx);
fftwf_destroy_plan(plan_ptgravy);
fftwf_free(th_ptgravx);
fftwf_free(th_ptgravy);
//clear padded gravmap
memset(th_gravmapbig,0,xblock2*yblock2*sizeof(float));
grav_fft_status = 1;
}
void grav_fft_cleanup()
{
if (!grav_fft_status) return;
fftwf_free(th_ptgravxt);
fftwf_free(th_ptgravyt);
fftwf_free(th_gravmapbig);
fftwf_free(th_gravmapbigt);
fftwf_free(th_gravxbig);
fftwf_free(th_gravybig);
fftwf_free(th_gravxbigt);
fftwf_free(th_gravybigt);
fftwf_destroy_plan(plan_gravmap);
fftwf_destroy_plan(plan_gravx_inverse);
fftwf_destroy_plan(plan_gravy_inverse);
grav_fft_status = 0;
}
void update_grav()
{
int x, y, changed = 0;
for (y=0; y<YRES/CELL; y++)
{
if(changed)
break;
for (x=0; x<XRES/CELL; x++)
{
if(th_ogravmap[y][x]!=th_gravmap[y][x]){
changed = 1;
break;
}
}
}
if(changed)
{
int xblock2 = XRES/CELL*2, yblock2 = YRES/CELL*2;
int i, fft_tsize = (xblock2/2+1)*yblock2;
float mr, mc, pr, pc, gr, gc;
if (!grav_fft_status) grav_fft_init();
//copy gravmap into padded gravmap array
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravmapbig[(y+YRES/CELL)*xblock2+XRES/CELL+x] = th_gravmap[y][x];
}
}
//transform gravmap
fftwf_execute(plan_gravmap);
//do convolution (multiply the complex numbers)
for (i=0; i<fft_tsize; i++)
{
mr = th_gravmapbigt[i][0];
mc = th_gravmapbigt[i][1];
pr = th_ptgravxt[i][0];
pc = th_ptgravxt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravxbigt[i][0] = gr;
th_gravxbigt[i][1] = gc;
pr = th_ptgravyt[i][0];
pc = th_ptgravyt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravybigt[i][0] = gr;
th_gravybigt[i][1] = gc;
}
//inverse transform, and copy from padded arrays into normal velocity maps
fftwf_execute(plan_gravx_inverse);
fftwf_execute(plan_gravy_inverse);
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravx[y][x] = th_gravxbig[y*xblock2+x];
th_gravy[y][x] = th_gravybig[y*xblock2+x];
th_gravp[y][x] = sqrtf(pow(th_gravxbig[y*xblock2+x],2)+pow(th_gravybig[y*xblock2+x],2));
}
}
}
memcpy(th_ogravmap, th_gravmap, sizeof(th_gravmap));
bilinear_interpolation(th_gravy, th_gravyf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravx, th_gravxf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravp, th_gravpf, XRES/CELL, YRES/CELL, XRES, YRES);
}
#else
// gravity without fast Fourier transforms
void update_grav(void)
{
int x, y, i, j, changed = 0;
float val, distance;
#ifndef GRAV_DIFF
//Find any changed cells
for (i=0; i<YRES/CELL; i++)
{
if(changed)
break;
for (j=0; j<XRES/CELL; j++)
{
if(th_ogravmap[i][j]!=th_gravmap[i][j]){
changed = 1;
break;
}
}
}
if(!changed)
goto fin;
memset(th_gravy, 0, sizeof(th_gravy));
memset(th_gravx, 0, sizeof(th_gravx));
#endif
for (i = 0; i < YRES / CELL; i++) {
for (j = 0; j < XRES / CELL; j++) {
#ifdef GRAV_DIFF
if (th_ogravmap[i][j] != th_gravmap[i][j])
{
#else
if (th_gravmap[i][j] > 0.0001f || th_gravmap[i][j]<-0.0001f) //Only calculate with populated or changed cells.
{
#endif
for (y = 0; y < YRES / CELL; y++) {
for (x = 0; x < XRES / CELL; x++) {
if (x == j && y == i)//Ensure it doesn't calculate with itself
continue;
distance = sqrt(pow(j - x, 2) + pow(i - y, 2));
#ifdef GRAV_DIFF
val = th_gravmap[i][j] - th_ogravmap[i][j];
#else
val = th_gravmap[i][j];
#endif
th_gravx[y][x] += M_GRAV * val * (j - x) / pow(distance, 3);
th_gravy[y][x] += M_GRAV * val * (i - y) / pow(distance, 3);
th_gravp[y][x] += M_GRAV * val / pow(distance, 2);
}
}
}
}
}
bilinear_interpolation(th_gravy, th_gravyf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravx, th_gravxf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravp, th_gravpf, XRES/CELL, YRES/CELL, XRES, YRES);
fin:
memcpy(th_ogravmap, th_gravmap, sizeof(th_gravmap));
memset(th_gravmap, 0, sizeof(th_gravmap));
}
#endif
void update_air(void)
{

View File

@ -19,6 +19,7 @@
#include <defines.h>
#include <air.h>
#include "gravity.h"
#include <powder.h>
#define INCLUDE_SHADERS
#include <graphics.h>

491
src/gravity.c Normal file
View File

@ -0,0 +1,491 @@
#include <math.h>
#include <pthread.h>
#include "defines.h"
#include "gravity.h"
#include "powder.h"
#ifdef GRAVFFT
#include <fftw3.h>
#endif
float gravmap[YRES/CELL][XRES/CELL]; //Maps to be used by the main thread
float gravx[YRES/CELL][XRES/CELL];
float gravy[YRES/CELL][XRES/CELL];
float gravp[YRES/CELL][XRES/CELL];
float *gravpf;
float *gravyf;
float *gravxf;
unsigned gravmask[YRES/CELL][XRES/CELL];
float th_ogravmap[YRES/CELL][XRES/CELL]; // Maps to be processed by the gravity thread
float th_gravmap[YRES/CELL][XRES/CELL];
float th_gravx[YRES/CELL][XRES/CELL];
float th_gravy[YRES/CELL][XRES/CELL];
float th_gravp[YRES/CELL][XRES/CELL];
float *th_gravpf;
float *th_gravyf;
float *th_gravxf;
int gravwl_timeout = 0;
int gravityMode = 0; // starts enabled in "vertical" mode...
int ngrav_enable = 0; //Newtonian gravity, will be set by save
pthread_t gravthread;
pthread_mutex_t gravmutex;
pthread_cond_t gravcv;
int grav_ready = 0;
int gravthread_done = 0;
void bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh)
{
int y, x, fxceil, fyceil;
float fx, fy, fyc, fxc;
double intp;
float tr, tl, br, bl;
//Bilinear interpolation for upscaling
for (y=0; y<rh; y++)
for (x=0; x<rw; x++)
{
fx = ((float)x)*((float)sw)/((float)rw);
fy = ((float)y)*((float)sh)/((float)rh);
fxc = modf(fx, &intp);
fyc = modf(fy, &intp);
fxceil = (int)ceil(fx);
fyceil = (int)ceil(fy);
if (fxceil>=sw) fxceil = sw-1;
if (fyceil>=sh) fyceil = sh-1;
tr = src[sw*(int)floor(fy)+fxceil];
tl = src[sw*(int)floor(fy)+(int)floor(fx)];
br = src[sw*fyceil+fxceil];
bl = src[sw*fyceil+(int)floor(fx)];
dst[rw*y+x] = ((tl*(1.0f-fxc))+(tr*(fxc)))*(1.0f-fyc) + ((bl*(1.0f-fxc))+(br*(fxc)))*(fyc);
}
}
void gravity_init()
{
//Allocate full size Gravmaps
th_gravyf = calloc(XRES*YRES, sizeof(float));
th_gravxf = calloc(XRES*YRES, sizeof(float));
th_gravpf = calloc(XRES*YRES, sizeof(float));
gravyf = calloc(XRES*YRES, sizeof(float));
gravxf = calloc(XRES*YRES, sizeof(float));
gravpf = calloc(XRES*YRES, sizeof(float));
}
void gravity_cleanup()
{
#ifdef GRAVFFT
grav_fft_cleanup();
#endif
}
void gravity_update_async()
{
int result;
if(ngrav_enable)
{
pthread_mutex_lock(&gravmutex);
result = grav_ready;
if(result) //Did the gravity thread finish?
{
memcpy(th_gravmap, gravmap, sizeof(gravmap)); //Move our current gravmap to be processed other thread
//memcpy(gravy, th_gravy, sizeof(gravy)); //Hmm, Gravy
//memcpy(gravx, th_gravx, sizeof(gravx)); //Move the processed velocity maps to be used
//memcpy(gravp, th_gravp, sizeof(gravp));
if (!sys_pause||framerender){ //Only update if not paused
//Switch the full size gravmaps, we don't really need the two above any more
float *tmpf;
tmpf = gravyf;
gravyf = th_gravyf;
th_gravyf = tmpf;
tmpf = gravxf;
gravxf = th_gravxf;
th_gravxf = tmpf;
tmpf = gravpf;
gravpf = th_gravpf;
th_gravpf = tmpf;
grav_ready = 0; //Tell the other thread that we're ready for it to continue
pthread_cond_signal(&gravcv);
}
}
pthread_mutex_unlock(&gravmutex);
//Apply the gravity mask
membwand(gravy, gravmask, sizeof(gravy), sizeof(gravmask));
membwand(gravx, gravmask, sizeof(gravx), sizeof(gravmask));
}
}
void* update_grav_async(void* unused)
{
int done = 0;
int thread_done = 0;
memset(th_ogravmap, 0, sizeof(th_ogravmap));
memset(th_gravmap, 0, sizeof(th_gravmap));
memset(th_gravy, 0, sizeof(th_gravy));
memset(th_gravx, 0, sizeof(th_gravx));
#ifdef GRAVFFT
grav_fft_init();
#endif
while(!thread_done){
if(!done){
update_grav();
done = 1;
pthread_mutex_lock(&gravmutex);
grav_ready = done;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
} else {
pthread_mutex_lock(&gravmutex);
pthread_cond_wait(&gravcv, &gravmutex);
done = grav_ready;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
}
}
pthread_exit(NULL);
}
void start_grav_async()
{
if(!ngrav_enable){
gravthread_done = 0;
grav_ready = 0;
pthread_mutex_init (&gravmutex, NULL);
pthread_cond_init(&gravcv, NULL);
pthread_create(&gravthread, NULL, update_grav_async, NULL); //Start asynchronous gravity simulation
ngrav_enable = 1;
}
memset(gravyf, 0, sizeof(gravyf));
memset(gravxf, 0, sizeof(gravxf));
memset(gravpf, 0, sizeof(gravpf));
}
void stop_grav_async()
{
if(ngrav_enable){
pthread_mutex_lock(&gravmutex);
gravthread_done = 1;
pthread_cond_signal(&gravcv);
pthread_mutex_unlock(&gravmutex);
pthread_join(gravthread, NULL);
pthread_mutex_destroy(&gravmutex); //Destroy the mutex
memset(gravy, 0, sizeof(gravy)); //Clear the grav velocities
memset(gravx, 0, sizeof(gravx)); //Clear the grav velocities
ngrav_enable = 0;
}
memset(gravyf, 0, sizeof(gravyf));
memset(gravxf, 0, sizeof(gravxf));
memset(gravpf, 0, sizeof(gravpf));
}
#ifdef GRAVFFT
int grav_fft_status = 0;
float *th_ptgravx, *th_ptgravy, *th_gravmapbig, *th_gravxbig, *th_gravybig;
fftwf_complex *th_ptgravxt, *th_ptgravyt, *th_gravmapbigt, *th_gravxbigt, *th_gravybigt;
fftwf_plan plan_gravmap, plan_gravx_inverse, plan_gravy_inverse;
void grav_fft_init()
{
int xblock2 = XRES/CELL*2;
int yblock2 = YRES/CELL*2;
int x, y, fft_tsize = (xblock2/2+1)*yblock2;
float distance, scaleFactor;
fftwf_plan plan_ptgravx, plan_ptgravy;
if (grav_fft_status) return;
//use fftw malloc function to ensure arrays are aligned, to get better performance
th_ptgravx = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravy = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravxt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_ptgravyt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravmapbig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravmapbigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravxbig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravybig = fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravxbigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravybigt = fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
//select best algorithm, could use FFTW_PATIENT or FFTW_EXHAUSTIVE but that increases the time taken to plan, and I don't see much increase in execution speed
plan_ptgravx = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravx, th_ptgravxt, FFTW_MEASURE);
plan_ptgravy = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravy, th_ptgravyt, FFTW_MEASURE);
plan_gravmap = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_gravmapbig, th_gravmapbigt, FFTW_MEASURE);
plan_gravx_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravxbigt, th_gravxbig, FFTW_MEASURE);
plan_gravy_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravybigt, th_gravybig, FFTW_MEASURE);
//(XRES/CELL)*(YRES/CELL)*4 is size of data array, scaling needed because FFTW calculates an unnormalized DFT
scaleFactor = -M_GRAV/((XRES/CELL)*(YRES/CELL)*4);
//calculate velocity map caused by a point mass
for (y=0; y<yblock2; y++)
{
for (x=0; x<xblock2; x++)
{
if (x==XRES/CELL && y==YRES/CELL) continue;
distance = sqrtf(pow(x-(XRES/CELL), 2) + pow(y-(YRES/CELL), 2));
th_ptgravx[y*xblock2+x] = scaleFactor*(x-(XRES/CELL)) / pow(distance, 3);
th_ptgravy[y*xblock2+x] = scaleFactor*(y-(YRES/CELL)) / pow(distance, 3);
}
}
th_ptgravx[yblock2*xblock2/2+xblock2/2] = 0.0f;
th_ptgravy[yblock2*xblock2/2+xblock2/2] = 0.0f;
//transform point mass velocity maps
fftwf_execute(plan_ptgravx);
fftwf_execute(plan_ptgravy);
fftwf_destroy_plan(plan_ptgravx);
fftwf_destroy_plan(plan_ptgravy);
fftwf_free(th_ptgravx);
fftwf_free(th_ptgravy);
//clear padded gravmap
memset(th_gravmapbig,0,xblock2*yblock2*sizeof(float));
grav_fft_status = 1;
}
void grav_fft_cleanup()
{
if (!grav_fft_status) return;
fftwf_free(th_ptgravxt);
fftwf_free(th_ptgravyt);
fftwf_free(th_gravmapbig);
fftwf_free(th_gravmapbigt);
fftwf_free(th_gravxbig);
fftwf_free(th_gravybig);
fftwf_free(th_gravxbigt);
fftwf_free(th_gravybigt);
fftwf_destroy_plan(plan_gravmap);
fftwf_destroy_plan(plan_gravx_inverse);
fftwf_destroy_plan(plan_gravy_inverse);
grav_fft_status = 0;
}
void update_grav()
{
int x, y, changed = 0;
for (y=0; y<YRES/CELL; y++)
{
if(changed)
break;
for (x=0; x<XRES/CELL; x++)
{
if(th_ogravmap[y][x]!=th_gravmap[y][x]){
changed = 1;
break;
}
}
}
if(changed)
{
int xblock2 = XRES/CELL*2, yblock2 = YRES/CELL*2;
int i, fft_tsize = (xblock2/2+1)*yblock2;
float mr, mc, pr, pc, gr, gc;
if (!grav_fft_status) grav_fft_init();
//copy gravmap into padded gravmap array
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravmapbig[(y+YRES/CELL)*xblock2+XRES/CELL+x] = th_gravmap[y][x];
}
}
//transform gravmap
fftwf_execute(plan_gravmap);
//do convolution (multiply the complex numbers)
for (i=0; i<fft_tsize; i++)
{
mr = th_gravmapbigt[i][0];
mc = th_gravmapbigt[i][1];
pr = th_ptgravxt[i][0];
pc = th_ptgravxt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravxbigt[i][0] = gr;
th_gravxbigt[i][1] = gc;
pr = th_ptgravyt[i][0];
pc = th_ptgravyt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravybigt[i][0] = gr;
th_gravybigt[i][1] = gc;
}
//inverse transform, and copy from padded arrays into normal velocity maps
fftwf_execute(plan_gravx_inverse);
fftwf_execute(plan_gravy_inverse);
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravx[y][x] = th_gravxbig[y*xblock2+x];
th_gravy[y][x] = th_gravybig[y*xblock2+x];
th_gravp[y][x] = sqrtf(pow(th_gravxbig[y*xblock2+x],2)+pow(th_gravybig[y*xblock2+x],2));
}
}
}
memcpy(th_ogravmap, th_gravmap, sizeof(th_gravmap));
bilinear_interpolation(th_gravy, th_gravyf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravx, th_gravxf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravp, th_gravpf, XRES/CELL, YRES/CELL, XRES, YRES);
}
#else
// gravity without fast Fourier transforms
void update_grav(void)
{
int x, y, i, j, changed = 0;
float val, distance;
#ifndef GRAV_DIFF
//Find any changed cells
for (i=0; i<YRES/CELL; i++)
{
if(changed)
break;
for (j=0; j<XRES/CELL; j++)
{
if(th_ogravmap[i][j]!=th_gravmap[i][j]){
changed = 1;
break;
}
}
}
if(!changed)
goto fin;
memset(th_gravy, 0, sizeof(th_gravy));
memset(th_gravx, 0, sizeof(th_gravx));
#endif
for (i = 0; i < YRES / CELL; i++) {
for (j = 0; j < XRES / CELL; j++) {
#ifdef GRAV_DIFF
if (th_ogravmap[i][j] != th_gravmap[i][j])
{
#else
if (th_gravmap[i][j] > 0.0001f || th_gravmap[i][j]<-0.0001f) //Only calculate with populated or changed cells.
{
#endif
for (y = 0; y < YRES / CELL; y++) {
for (x = 0; x < XRES / CELL; x++) {
if (x == j && y == i)//Ensure it doesn't calculate with itself
continue;
distance = sqrt(pow(j - x, 2) + pow(i - y, 2));
#ifdef GRAV_DIFF
val = th_gravmap[i][j] - th_ogravmap[i][j];
#else
val = th_gravmap[i][j];
#endif
th_gravx[y][x] += M_GRAV * val * (j - x) / pow(distance, 3);
th_gravy[y][x] += M_GRAV * val * (i - y) / pow(distance, 3);
th_gravp[y][x] += M_GRAV * val / pow(distance, 2);
}
}
}
}
}
bilinear_interpolation(th_gravy, th_gravyf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravx, th_gravxf, XRES/CELL, YRES/CELL, XRES, YRES);
bilinear_interpolation(th_gravp, th_gravpf, XRES/CELL, YRES/CELL, XRES, YRES);
fin:
memcpy(th_ogravmap, th_gravmap, sizeof(th_gravmap));
memset(th_gravmap, 0, sizeof(th_gravmap));
}
#endif
void grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout)
{
if(x < 0 || x >= XRES/CELL || y < 0 || y >= YRES/CELL)
return;
if(x == 0 || y ==0 || y == (YRES/CELL)-1 || x == (XRES/CELL)-1)
*shapeout = 1;
checkmap[y][x] = 1;
shape[y][x] = 1;
if(x-1 >= 0 && !checkmap[y][x-1] && bmap[y][x-1]!=WL_GRAV)
grav_mask_r(x-1, y, checkmap, shape, shapeout);
if(y-1 >= 0 && !checkmap[y-1][x] && bmap[y-1][x]!=WL_GRAV)
grav_mask_r(x, y-1, checkmap, shape, shapeout);
if(x+1 < XRES/CELL && !checkmap[y][x+1] && bmap[y][x+1]!=WL_GRAV)
grav_mask_r(x+1, y, checkmap, shape, shapeout);
if(y+1 < YRES/CELL && !checkmap[y+1][x] && bmap[y+1][x]!=WL_GRAV)
grav_mask_r(x, y+1, checkmap, shape, shapeout);
return;
}
struct mask_el {
char *shape;
char shapeout;
void *next;
};
typedef struct mask_el mask_el;
void mask_free(mask_el *c_mask_el){
if(c_mask_el==NULL)
return;
if(c_mask_el->next!=NULL)
mask_free(c_mask_el->next);
free(c_mask_el->shape);
free(c_mask_el);
}
void gravity_mask()
{
char checkmap[YRES/CELL][XRES/CELL];
int x = 0, y = 0;
mask_el *t_mask_el = NULL;
mask_el *c_mask_el = NULL;
memset(checkmap, 0, sizeof(checkmap));
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(bmap[y][x]!=WL_GRAV && checkmap[y][x] == 0)
{
//Create a new shape
if(t_mask_el==NULL){
t_mask_el = malloc(sizeof(mask_el));
t_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL));
memset(t_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
t_mask_el->shapeout = 0;
t_mask_el->next = NULL;
c_mask_el = t_mask_el;
} else {
c_mask_el->next = malloc(sizeof(mask_el));
c_mask_el = c_mask_el->next;
c_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL));
memset(c_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
c_mask_el->shapeout = 0;
c_mask_el->next = NULL;
}
//Fill the shape
grav_mask_r(x, y, checkmap, c_mask_el->shape, &c_mask_el->shapeout);
}
}
}
c_mask_el = t_mask_el;
memset(gravmask, 0, sizeof(gravmask));
while(c_mask_el!=NULL)
{
char *cshape = c_mask_el->shape;
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(cshape[y*(XRES/CELL)+x]){
if(c_mask_el->shapeout)
gravmask[y][x] = 0xFFFFFFFF;
else
gravmask[y][x] = 0x00000000;
}
}
}
c_mask_el = c_mask_el->next;
}
mask_free(t_mask_el);
}

View File

@ -15,6 +15,7 @@
#include <interface.h>
#include <misc.h>
#include <console.h>
#include "gravity.h"
#include <images.h>
#if defined(WIN32) && !defined(__GNUC__)
#include <io.h>

View File

@ -1,6 +1,7 @@
#include <defines.h>
#ifdef LUACONSOLE
#include <powder.h>
#include "gravity.h"
#include <console.h>
#include <luaconsole.h>

View File

@ -46,6 +46,7 @@
#include <misc.h>
#include <font.h>
#include <powder.h>
#include "gravity.h"
#include <graphics.h>
#include <powdergraphics.h>
#include <version.h>
@ -171,7 +172,6 @@ int do_open = 0;
int sys_pause = 0;
int sys_shortcuts = 1;
int legacy_enable = 0; //Used to disable new features such as heat, will be set by save.
int ngrav_enable = 0; //Newtonian gravity, will be set by save
int aheat_enable; //Ambient heat
int decorations_enable = 1;
int hud_enable = 1;
@ -197,12 +197,6 @@ sign signs[MAXSIGNS];
int numCores = 4;
pthread_t gravthread;
pthread_mutex_t gravmutex;
pthread_cond_t gravcv;
int grav_ready = 0;
int gravthread_done = 0;
int core_count()
{
int numCPU = 1;
@ -1450,73 +1444,6 @@ int set_scale(int scale, int kiosk){
}
return 1;
}
void* update_grav_async(void* unused)
{
int done = 0;
int thread_done = 0;
memset(th_ogravmap, 0, sizeof(th_ogravmap));
memset(th_gravmap, 0, sizeof(th_gravmap));
memset(th_gravy, 0, sizeof(th_gravy));
memset(th_gravx, 0, sizeof(th_gravx));
#ifdef GRAVFFT
grav_fft_init();
#endif
while(!thread_done){
if(!done){
update_grav();
done = 1;
pthread_mutex_lock(&gravmutex);
grav_ready = done;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
} else {
pthread_mutex_lock(&gravmutex);
pthread_cond_wait(&gravcv, &gravmutex);
done = grav_ready;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
}
}
pthread_exit(NULL);
}
void start_grav_async()
{
if(!ngrav_enable){
gravthread_done = 0;
grav_ready = 0;
pthread_mutex_init (&gravmutex, NULL);
pthread_cond_init(&gravcv, NULL);
pthread_create(&gravthread, NULL, update_grav_async, NULL); //Start asynchronous gravity simulation
ngrav_enable = 1;
}
memset(gravyf, 0, sizeof(gravyf));
memset(gravxf, 0, sizeof(gravxf));
memset(gravpf, 0, sizeof(gravpf));
}
void stop_grav_async()
{
if(ngrav_enable){
pthread_mutex_lock(&gravmutex);
gravthread_done = 1;
pthread_cond_signal(&gravcv);
pthread_mutex_unlock(&gravmutex);
pthread_join(gravthread, NULL);
pthread_mutex_destroy(&gravmutex); //Destroy the mutex
memset(gravy, 0, sizeof(gravy)); //Clear the grav velocities
memset(gravx, 0, sizeof(gravx)); //Clear the grav velocities
ngrav_enable = 0;
}
memset(gravyf, 0, sizeof(gravyf));
memset(gravxf, 0, sizeof(gravxf));
memset(gravpf, 0, sizeof(gravpf));
}
#ifdef RENDERER
int main(int argc, char *argv[])
@ -1648,14 +1575,7 @@ int main(int argc, char *argv[])
part_vbuf_store = part_vbuf;
pers_bg = calloc((XRES+BARSIZE)*YRES, PIXELSIZE);
//Allocate full size Gravmaps
th_gravyf = calloc(XRES*YRES, sizeof(float));
th_gravxf = calloc(XRES*YRES, sizeof(float));
th_gravpf = calloc(XRES*YRES, sizeof(float));
gravyf = calloc(XRES*YRES, sizeof(float));
gravxf = calloc(XRES*YRES, sizeof(float));
gravpf = calloc(XRES*YRES, sizeof(float));
gravity_init();
GSPEED = 1;
/* Set 16-bit stereo audio at 22Khz */
@ -1931,41 +1851,7 @@ int main(int argc, char *argv[])
if(sl == WL_GRAV+100 || sr == WL_GRAV+100)
draw_grav_zones(part_vbuf);
if(ngrav_enable){
pthread_mutex_lock(&gravmutex);
result = grav_ready;
if(result) //Did the gravity thread finish?
{
memcpy(th_gravmap, gravmap, sizeof(gravmap)); //Move our current gravmap to be processed other thread
//memcpy(gravy, th_gravy, sizeof(gravy)); //Hmm, Gravy
//memcpy(gravx, th_gravx, sizeof(gravx)); //Move the processed velocity maps to be used
//memcpy(gravp, th_gravp, sizeof(gravp));
if (!sys_pause||framerender){ //Only update if not paused
//Switch the full size gravmaps, we don't really need the two above any more
float *tmpf;
tmpf = gravyf;
gravyf = th_gravyf;
th_gravyf = tmpf;
tmpf = gravxf;
gravxf = th_gravxf;
th_gravxf = tmpf;
tmpf = gravpf;
gravpf = th_gravpf;
th_gravpf = tmpf;
grav_ready = 0; //Tell the other thread that we're ready for it to continue
pthread_cond_signal(&gravcv);
}
}
pthread_mutex_unlock(&gravmutex);
//Apply the gravity mask
membwand(gravy, gravmask, sizeof(gravy), sizeof(gravmask));
membwand(gravx, gravmask, sizeof(gravx), sizeof(gravmask));
}
gravity_update_async(); //Check for updated velocity maps from gravity thread
if (!sys_pause||framerender) //Only update if not paused
memset(gravmap, 0, sizeof(gravmap)); //Clear the old gravmap
@ -3677,9 +3563,7 @@ int main(int argc, char *argv[])
SDL_CloseAudio();
http_done();
#ifdef GRAVFFT
grav_fft_cleanup();
#endif
gravity_cleanup();
#ifdef LUACONSOLE
luacon_close();
#endif

View File

@ -4,12 +4,11 @@
#include <powder.h>
#include <air.h>
#include <misc.h>
#include "gravity.h"
#ifdef LUACONSOLE
#include <luaconsole.h>
#endif
int gravwl_timeout = 0;
int wire_placed = 0;
int lighting_recreate = 0;
@ -23,7 +22,6 @@ unsigned char fighcount = 0; //Contains the number of fighters
particle *parts;
particle *cb_parts;
int gravityMode = 0; // starts enabled in "vertical" mode...
int airMode = 0;
@ -3364,90 +3362,3 @@ inline void orbitalparts_set(int *block1, int *block2, int resblock1[], int resb
*block1 = block1tmp;
*block2 = block2tmp;
}
void grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout)
{
if(x < 0 || x >= XRES/CELL || y < 0 || y >= YRES/CELL)
return;
if(x == 0 || y ==0 || y == (YRES/CELL)-1 || x == (XRES/CELL)-1)
*shapeout = 1;
checkmap[y][x] = 1;
shape[y][x] = 1;
if(x-1 >= 0 && !checkmap[y][x-1] && bmap[y][x-1]!=WL_GRAV)
grav_mask_r(x-1, y, checkmap, shape, shapeout);
if(y-1 >= 0 && !checkmap[y-1][x] && bmap[y-1][x]!=WL_GRAV)
grav_mask_r(x, y-1, checkmap, shape, shapeout);
if(x+1 < XRES/CELL && !checkmap[y][x+1] && bmap[y][x+1]!=WL_GRAV)
grav_mask_r(x+1, y, checkmap, shape, shapeout);
if(y+1 < YRES/CELL && !checkmap[y+1][x] && bmap[y+1][x]!=WL_GRAV)
grav_mask_r(x, y+1, checkmap, shape, shapeout);
return;
}
struct mask_el {
char *shape;
char shapeout;
void *next;
};
typedef struct mask_el mask_el;
void mask_free(mask_el *c_mask_el){
if(c_mask_el==NULL)
return;
if(c_mask_el->next!=NULL)
mask_free(c_mask_el->next);
free(c_mask_el->shape);
free(c_mask_el);
}
void gravity_mask()
{
char checkmap[YRES/CELL][XRES/CELL];
int x = 0, y = 0;
mask_el *t_mask_el = NULL;
mask_el *c_mask_el = NULL;
memset(checkmap, 0, sizeof(checkmap));
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(bmap[y][x]!=WL_GRAV && checkmap[y][x] == 0)
{
//Create a new shape
if(t_mask_el==NULL){
t_mask_el = malloc(sizeof(mask_el));
t_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL));
memset(t_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
t_mask_el->shapeout = 0;
t_mask_el->next = NULL;
c_mask_el = t_mask_el;
} else {
c_mask_el->next = malloc(sizeof(mask_el));
c_mask_el = c_mask_el->next;
c_mask_el->shape = malloc((XRES/CELL)*(YRES/CELL));
memset(c_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
c_mask_el->shapeout = 0;
c_mask_el->next = NULL;
}
//Fill the shape
grav_mask_r(x, y, checkmap, c_mask_el->shape, &c_mask_el->shapeout);
}
}
}
c_mask_el = t_mask_el;
memset(gravmask, 0, sizeof(gravmask));
while(c_mask_el!=NULL)
{
char *cshape = c_mask_el->shape;
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(cshape[y*(XRES/CELL)+x]){
if(c_mask_el->shapeout)
gravmask[y][x] = 0xFFFFFFFF;
else
gravmask[y][x] = 0x00000000;
}
}
}
c_mask_el = c_mask_el->next;
}
mask_free(t_mask_el);
}