The-Powder-Toy/src/simulation/Gravity.cpp

507 lines
14 KiB
C++
Raw Normal View History

2012-01-08 11:39:03 -06:00
#include <math.h>
#include <sys/types.h>
#include <pthread.h>
#include "Config.h"
#include "Gravity.h"
//#include "powder.h"
#ifdef GRAVFFT
#include <fftw3.h>
#endif
void Gravity::bilinear_interpolation(float *src, float *dst, int sw, int sh, int rw, int rh)
{
int y, x, fxceil, fyceil;
float fx, fy, fyc, fxc;
double intp;
float tr, tl, br, bl;
//Bilinear interpolation for upscaling
for (y=0; y<rh; y++)
for (x=0; x<rw; x++)
{
fx = ((float)x)*((float)sw)/((float)rw);
fy = ((float)y)*((float)sh)/((float)rh);
fxc = modf(fx, &intp);
fyc = modf(fy, &intp);
fxceil = (int)ceil(fx);
fyceil = (int)ceil(fy);
if (fxceil>=sw) fxceil = sw-1;
if (fyceil>=sh) fyceil = sh-1;
tr = src[sw*(int)floor(fy)+fxceil];
tl = src[sw*(int)floor(fy)+(int)floor(fx)];
br = src[sw*fyceil+fxceil];
bl = src[sw*fyceil+(int)floor(fx)];
dst[rw*y+x] = ((tl*(1.0f-fxc))+(tr*(fxc)))*(1.0f-fyc) + ((bl*(1.0f-fxc))+(br*(fxc)))*(fyc);
}
}
void Gravity::gravity_init()
{
2012-04-16 07:58:20 -05:00
ngrav_enable = 0;
2012-01-08 11:39:03 -06:00
//Allocate full size Gravmaps
th_ogravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravy = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravx = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
th_gravp = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravmap = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravy = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravx = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravp = (float *)calloc((XRES/CELL)*(YRES/CELL), sizeof(float));
gravmask = (unsigned int *)calloc((XRES/CELL)*(YRES/CELL), sizeof(unsigned));
#ifdef GRAVFFT
grav_fft_init();
#endif
2012-01-08 11:39:03 -06:00
}
void Gravity::gravity_cleanup()
{
#ifdef GRAVFFT
grav_fft_cleanup();
#endif
//Free gravity info
free(th_ogravmap);
free(th_gravmap);
free(th_gravy);
free(th_gravx);
free(th_gravp);
free(gravmap);
free(gravy);
free(gravx);
free(gravp);
free(gravmask);
2012-01-08 11:39:03 -06:00
}
void Gravity::gravity_update_async()
{
int result;
if(ngrav_enable)
{
pthread_mutex_lock(&gravmutex);
result = grav_ready;
if(result) //Did the gravity thread finish?
{
//if (!sys_pause||framerender){ //Only update if not paused
//Switch the full size gravmaps, we don't really need the two above any more
float *tmpf;
if(th_gravchanged)
{
#if !defined(GRAVFFT) && defined(GRAV_DIFF)
memcpy(gravy, th_gravy, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravx, th_gravx, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memcpy(gravp, th_gravp, (XRES/CELL)*(YRES/CELL)*sizeof(float));
#else
tmpf = gravy;
gravy = th_gravy;
th_gravy = tmpf;
tmpf = gravx;
gravx = th_gravx;
th_gravx = tmpf;
tmpf = gravp;
gravp = th_gravp;
th_gravp = tmpf;
#endif
}
tmpf = gravmap;
gravmap = th_gravmap;
th_gravmap = tmpf;
grav_ready = 0; //Tell the other thread that we're ready for it to continue
pthread_cond_signal(&gravcv);
//}
}
pthread_mutex_unlock(&gravmutex);
//Apply the gravity mask
membwand(gravy, gravmask, (XRES/CELL)*(YRES/CELL)*sizeof(float), (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
membwand(gravx, gravmask, (XRES/CELL)*(YRES/CELL)*sizeof(float), (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
memset(gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
}
void *Gravity::update_grav_async_helper(void * context)
{
((Gravity *)context)->update_grav_async();
return NULL;
2012-01-08 11:39:03 -06:00
}
void Gravity::update_grav_async()
{
int done = 0;
int thread_done = 0;
memset(th_ogravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravmap, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
//memset(th_gravy, 0, XRES*YRES*sizeof(float));
//memset(th_gravx, 0, XRES*YRES*sizeof(float));
//memset(th_gravp, 0, XRES*YRES*sizeof(float));
while(!thread_done){
if(!done){
update_grav();
done = 1;
pthread_mutex_lock(&gravmutex);
grav_ready = done;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
} else {
pthread_mutex_lock(&gravmutex);
pthread_cond_wait(&gravcv, &gravmutex);
done = grav_ready;
thread_done = gravthread_done;
pthread_mutex_unlock(&gravmutex);
}
}
pthread_exit(NULL);
}
void Gravity::start_grav_async()
{
if(!ngrav_enable){
gravthread_done = 0;
grav_ready = 0;
pthread_mutex_init (&gravmutex, NULL);
pthread_cond_init(&gravcv, NULL);
pthread_create(&gravthread, NULL, &Gravity::update_grav_async_helper, this); //Start asynchronous gravity simulation
ngrav_enable = 1;
}
memset(gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
void Gravity::stop_grav_async()
{
if(ngrav_enable){
pthread_mutex_lock(&gravmutex);
gravthread_done = 1;
pthread_cond_signal(&gravcv);
pthread_mutex_unlock(&gravmutex);
pthread_join(gravthread, NULL);
pthread_mutex_destroy(&gravmutex); //Destroy the mutex
ngrav_enable = 0;
}
//Clear the grav velocities
memset(gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(gravp, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
#ifdef GRAVFFT
int grav_fft_status = 0;
float *th_ptgravx, *th_ptgravy, *th_gravmapbig, *th_gravxbig, *th_gravybig;
fftwf_complex *th_ptgravxt, *th_ptgravyt, *th_gravmapbigt, *th_gravxbigt, *th_gravybigt;
fftwf_plan plan_gravmap, plan_gravx_inverse, plan_gravy_inverse;
void Gravity::grav_fft_init()
{
int xblock2 = XRES/CELL*2;
int yblock2 = YRES/CELL*2;
int x, y, fft_tsize = (xblock2/2+1)*yblock2;
float distance, scaleFactor;
fftwf_plan plan_ptgravx, plan_ptgravy;
if (grav_fft_status) return;
//use fftw malloc function to ensure arrays are aligned, to get better performance
2012-04-16 07:58:20 -05:00
th_ptgravx = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravy = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_ptgravxt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_ptgravyt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravmapbig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravmapbigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravxbig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravybig = (float*)fftwf_malloc(xblock2*yblock2*sizeof(float));
th_gravxbigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
th_gravybigt = (fftwf_complex*)fftwf_malloc(fft_tsize*sizeof(fftwf_complex));
2012-01-08 11:39:03 -06:00
//select best algorithm, could use FFTW_PATIENT or FFTW_EXHAUSTIVE but that increases the time taken to plan, and I don't see much increase in execution speed
plan_ptgravx = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravx, th_ptgravxt, FFTW_MEASURE);
plan_ptgravy = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_ptgravy, th_ptgravyt, FFTW_MEASURE);
plan_gravmap = fftwf_plan_dft_r2c_2d(yblock2, xblock2, th_gravmapbig, th_gravmapbigt, FFTW_MEASURE);
plan_gravx_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravxbigt, th_gravxbig, FFTW_MEASURE);
plan_gravy_inverse = fftwf_plan_dft_c2r_2d(yblock2, xblock2, th_gravybigt, th_gravybig, FFTW_MEASURE);
//(XRES/CELL)*(YRES/CELL)*4 is size of data array, scaling needed because FFTW calculates an unnormalized DFT
scaleFactor = -M_GRAV/((XRES/CELL)*(YRES/CELL)*4);
//calculate velocity map caused by a point mass
for (y=0; y<yblock2; y++)
{
for (x=0; x<xblock2; x++)
{
if (x==XRES/CELL && y==YRES/CELL) continue;
distance = sqrtf(pow(x-(XRES/CELL), 2) + pow(y-(YRES/CELL), 2));
th_ptgravx[y*xblock2+x] = scaleFactor*(x-(XRES/CELL)) / pow(distance, 3);
th_ptgravy[y*xblock2+x] = scaleFactor*(y-(YRES/CELL)) / pow(distance, 3);
}
}
th_ptgravx[yblock2*xblock2/2+xblock2/2] = 0.0f;
th_ptgravy[yblock2*xblock2/2+xblock2/2] = 0.0f;
//transform point mass velocity maps
fftwf_execute(plan_ptgravx);
fftwf_execute(plan_ptgravy);
fftwf_destroy_plan(plan_ptgravx);
fftwf_destroy_plan(plan_ptgravy);
fftwf_free(th_ptgravx);
fftwf_free(th_ptgravy);
//clear padded gravmap
memset(th_gravmapbig,0,xblock2*yblock2*sizeof(float));
grav_fft_status = 1;
}
void Gravity::grav_fft_cleanup()
{
if (!grav_fft_status) return;
fftwf_free(th_ptgravxt);
fftwf_free(th_ptgravyt);
fftwf_free(th_gravmapbig);
fftwf_free(th_gravmapbigt);
fftwf_free(th_gravxbig);
fftwf_free(th_gravybig);
fftwf_free(th_gravxbigt);
fftwf_free(th_gravybigt);
fftwf_destroy_plan(plan_gravmap);
fftwf_destroy_plan(plan_gravx_inverse);
fftwf_destroy_plan(plan_gravy_inverse);
grav_fft_status = 0;
}
void Gravity::update_grav()
{
int x, y, changed = 0;
int xblock2 = XRES/CELL*2, yblock2 = YRES/CELL*2;
int i, fft_tsize = (xblock2/2+1)*yblock2;
float mr, mc, pr, pc, gr, gc;
for (y=0; y<YRES/CELL; y++)
{
if(changed)
break;
for (x=0; x<XRES/CELL; x++)
{
if(th_ogravmap[y*(XRES/CELL)+x]!=th_gravmap[y*(XRES/CELL)+x]){
changed = 1;
break;
}
}
}
if(changed)
{
th_gravchanged = 1;
if (!grav_fft_status) grav_fft_init();
//copy gravmap into padded gravmap array
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravmapbig[(y+YRES/CELL)*xblock2+XRES/CELL+x] = th_gravmap[y*(XRES/CELL)+x];
}
}
//transform gravmap
fftwf_execute(plan_gravmap);
//do convolution (multiply the complex numbers)
for (i=0; i<fft_tsize; i++)
{
mr = th_gravmapbigt[i][0];
mc = th_gravmapbigt[i][1];
pr = th_ptgravxt[i][0];
pc = th_ptgravxt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravxbigt[i][0] = gr;
th_gravxbigt[i][1] = gc;
pr = th_ptgravyt[i][0];
pc = th_ptgravyt[i][1];
gr = mr*pr-mc*pc;
gc = mr*pc+mc*pr;
th_gravybigt[i][0] = gr;
th_gravybigt[i][1] = gc;
}
//inverse transform, and copy from padded arrays into normal velocity maps
fftwf_execute(plan_gravx_inverse);
fftwf_execute(plan_gravy_inverse);
for (y=0; y<YRES/CELL; y++)
{
for (x=0; x<XRES/CELL; x++)
{
th_gravx[y*(XRES/CELL)+x] = th_gravxbig[y*xblock2+x];
th_gravy[y*(XRES/CELL)+x] = th_gravybig[y*xblock2+x];
th_gravp[y*(XRES/CELL)+x] = sqrtf(pow(th_gravxbig[y*xblock2+x],2)+pow(th_gravybig[y*xblock2+x],2));
}
}
}
else
{
th_gravchanged = 0;
}
memcpy(th_ogravmap, th_gravmap, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
#else
// gravity without fast Fourier transforms
void Gravity::update_grav(void)
{
int x, y, i, j, changed = 0;
float val, distance;
th_gravchanged = 0;
#ifndef GRAV_DIFF
//Find any changed cells
for (i=0; i<YRES/CELL; i++)
{
if(changed)
break;
for (j=0; j<XRES/CELL; j++)
{
if(th_ogravmap[i*(XRES/CELL)+j]!=th_gravmap[i*(XRES/CELL)+j]){
changed = 1;
break;
}
}
}
if(!changed)
goto fin;
memset(th_gravy, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
memset(th_gravx, 0, (XRES/CELL)*(YRES/CELL)*sizeof(float));
#endif
th_gravchanged = 1;
for (i = 0; i < YRES / CELL; i++) {
for (j = 0; j < XRES / CELL; j++) {
#ifdef GRAV_DIFF
if (th_ogravmap[i*(XRES/CELL)+j] != th_gravmap[i*(XRES/CELL)+j])
{
#else
if (th_gravmap[i*(XRES/CELL)+j] > 0.0001f || th_gravmap[i*(XRES/CELL)+j]<-0.0001f) //Only calculate with populated or changed cells.
{
#endif
for (y = 0; y < YRES / CELL; y++) {
for (x = 0; x < XRES / CELL; x++) {
if (x == j && y == i)//Ensure it doesn't calculate with itself
continue;
distance = sqrt(pow(j - x, 2) + pow(i - y, 2));
#ifdef GRAV_DIFF
val = th_gravmap[i*(XRES/CELL)+j] - th_ogravmap[i*(XRES/CELL)+j];
#else
val = th_gravmap[i*(XRES/CELL)+j];
#endif
th_gravx[y*(XRES/CELL)+x] += M_GRAV * val * (j - x) / pow(distance, 3);
th_gravy[y*(XRES/CELL)+x] += M_GRAV * val * (i - y) / pow(distance, 3);
th_gravp[y*(XRES/CELL)+x] += M_GRAV * val / pow(distance, 2);
}
}
}
}
}
fin:
memcpy(th_ogravmap, th_gravmap, (XRES/CELL)*(YRES/CELL)*sizeof(float));
}
#endif
void Gravity::grav_mask_r(int x, int y, char checkmap[YRES/CELL][XRES/CELL], char shape[YRES/CELL][XRES/CELL], char *shapeout)
{
if(x < 0 || x >= XRES/CELL || y < 0 || y >= YRES/CELL)
return;
if(x == 0 || y ==0 || y == (YRES/CELL)-1 || x == (XRES/CELL)-1)
*shapeout = 1;
checkmap[y][x] = 1;
shape[y][x] = 1;
if(x-1 >= 0 && !checkmap[y][x-1] && bmap[y][x-1]!=WL_GRAV)
grav_mask_r(x-1, y, checkmap, shape, shapeout);
if(y-1 >= 0 && !checkmap[y-1][x] && bmap[y-1][x]!=WL_GRAV)
grav_mask_r(x, y-1, checkmap, shape, shapeout);
if(x+1 < XRES/CELL && !checkmap[y][x+1] && bmap[y][x+1]!=WL_GRAV)
grav_mask_r(x+1, y, checkmap, shape, shapeout);
if(y+1 < YRES/CELL && !checkmap[y+1][x] && bmap[y+1][x]!=WL_GRAV)
grav_mask_r(x, y+1, checkmap, shape, shapeout);
return;
}
void Gravity::mask_free(mask_el *c_mask_el){
if(c_mask_el==NULL)
return;
if(c_mask_el->next!=NULL)
mask_free((mask_el*)c_mask_el->next);
free(c_mask_el->shape);
free(c_mask_el);
}
void Gravity::gravity_mask()
{
char checkmap[YRES/CELL][XRES/CELL];
int x = 0, y = 0, i, j;
unsigned maskvalue;
mask_el *t_mask_el = NULL;
mask_el *c_mask_el = NULL;
if(!gravmask)
return;
memset(checkmap, 0, sizeof(checkmap));
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(bmap[y][x]!=WL_GRAV && checkmap[y][x] == 0)
{
//Create a new shape
if(t_mask_el==NULL){
t_mask_el = (mask_el *)malloc(sizeof(mask_el));
t_mask_el->shape = (char *)malloc((XRES/CELL)*(YRES/CELL));
memset(t_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
t_mask_el->shapeout = 0;
t_mask_el->next = NULL;
c_mask_el = t_mask_el;
} else {
c_mask_el->next = (mask_el *)malloc(sizeof(mask_el));
c_mask_el = (mask_el *)c_mask_el->next;
c_mask_el->shape = (char *)malloc((XRES/CELL)*(YRES/CELL));
memset(c_mask_el->shape, 0, (XRES/CELL)*(YRES/CELL));
c_mask_el->shapeout = 0;
c_mask_el->next = NULL;
}
//Fill the shape
grav_mask_r(x, y, (char (*)[XRES/CELL])checkmap, (char (*)[XRES/CELL])c_mask_el->shape, (char*)&c_mask_el->shapeout);
}
}
}
c_mask_el = t_mask_el;
memset(gravmask, 0, (XRES/CELL)*(YRES/CELL)*sizeof(unsigned));
while(c_mask_el!=NULL)
{
char *cshape = c_mask_el->shape;
for(x = 0; x < XRES/CELL; x++)
{
for(y = 0; y < YRES/CELL; y++)
{
if(cshape[y*(XRES/CELL)+x]){
if(c_mask_el->shapeout)
maskvalue = 0xFFFFFFFF;
else
maskvalue = 0x00000000;
gravmask[y*(XRES/CELL)+x] = maskvalue;
}
}
}
c_mask_el = (mask_el*)c_mask_el->next;
}
mask_free(t_mask_el);
}
Gravity::Gravity()
{
gravity_init();
}
Gravity::~Gravity()
{
gravity_cleanup();
}